MULTIDIMENSIONAL SOLID-STATE NMR AND POLYMERS

K. Schmidt-Rohr
and
H. W. Spiess

Max-Planck-Institut für Polymerforschung
Postfach 3148, D-55021 Mainz, Germany

ACADEMIC PRESS
Harcourt Brace & Company, Publishers
LONDON SAN DIEGO NEW YORK BOSTON
SYDNEY TOKYO TORONTO
Contents

Preface xiii
Acknowledgements xv
NMR Acronyms and Abbreviations xvii

CHAPTER ONE

Introduction 1
1.1 Overview 1
1.2 Examples 3
1.3 References 11

CHAPTER TWO

Principles of NMR of Organic Solids 13
2.1 Introduction 13
2.2 Semiclassical description of pulsed NMR 13
2.3 Concepts of NMR in terms of textbook quantum mechanics 16
2.4 Hamiltonians and spectra 18
 2.4.1 Important NMR interactions and their Hamiltonians 18
 2.4.2 Segmental-orientation dependence of NMR frequencies 21
 2.4.3 Powder lineshapes 28
 2.4.4 Motional averaging of interaction tensors and NMR spectra 32
 2.4.5 Basics of sample spinning (MAS and OMAS) 35
 2.4.6 13C and 1H chemical shifts in theory and practice 37
 2.4.7 Intermediate motional regime 41
2.5 Quantum-mechanical calculations of NMR time evolutions 43
 2.5.1 Density operator $\hat{\rho}$ and magnetization 43
 2.5.2 The action of Hamiltonians on $\hat{\rho}$: time evolution 45
 2.5.3 Matrix representations of spin operators 47
 2.5.4 Time evolution of the density matrix 48
 2.5.5 2H quadrupolar interaction 49
 2.5.6 Heteronuclear dipolar couplings 52
 2.5.7 1H wideline spectra 55
 2.5.8 Rotating frames 56
2.6 The effects of radio-frequency (rf) pulses 58
 2.6.1 Rf pulses and the rotating frame 58
 2.6.2 Pulse propagators and the sense of precession 59
 2.6.3 Calculating the Hahn spin echo 60
 2.6.4 The solid (quadrupolar) echo 61
 2.6.5 Finite pulse lengths and their excitation effects 63
 2.6.6 Composite 180° pulses 66
2.7 References 67
CHAPTER THREE
High-Resolution NMR Techniques for Solids

3.1 Introduction
3.2 Phenomenological descriptions of pulsed techniques
3.3 Averaging of Hamiltonians
 3.3.1 Homonuclear decoupling by multipulse sequences
 3.3.2 How to determine average Hamiltonians
 3.3.3 The Magnus expansion
 3.3.4 Second averaging
3.4 Further applications of average-Hamiltonian theory
 3.4.1 Heteronuclear decoupling
 3.4.2 Spin lock
 3.4.3 Cross polarization
 3.4.4 Chemical-shift scaling
3.5 Homonuclear polarization transfer
 3.5.1 Phenomenological description of spin diffusion
 3.5.2 Polarization transfer between two spins
 3.5.3 Spin exchange in systems of abundant spins
3.6 Time-dependent perturbation theory
3.7 Proton-driven 13C spin diffusion, and 1H spin diffusion
3.8 Selective excitation by hard pulses
3.9 Magic-angle spinning (MAS)
 3.9.1 MAS time signals and sidebands
 3.9.2 The mirror-image condition for absorptive sidebands
 3.9.3 Total suppression of spinning sidebands (TOSS)
 3.9.4 Time-reversed TOSS
 3.9.5 Hamiltonians under MAS
3.10 Averaging of second-order quadrupolar couplings
3.11 Zero-field NMR
3.12 Multiple-quantum coherences
3.13 Incoherent effects in solid-state NMR
 3.13.1 Phenomenology of relaxation in solid-state NMR
 3.13.2 Coherent vs. incoherent processes
 3.13.3 Homogeneous, inhomogeneous, coherent line-broadening
 3.13.4 (In)homogeneous: line-broadening vs. Hamiltonians
3.14 References

CHAPTER FOUR
Fourier Theory for 1D and 2D NMR

4.1 Motivation
4.2 Basic definitions
4.3 Useful FT relations
4.4 Important Fourier pairs
4.5 Specific applications of Fourier theory in NMR
 4.5.1 Quadrature detection and TPPI
 4.5.2 Absorptive and dispersive signals, and constant phase correction
6.5.3 Separation of sidebands by their order, and PASS 202
6.6 Separation of dipolar patterns by isotropic shifts 205
 6.6.1 Separation of heteronuclear dipolar sideband patterns 205
 6.6.2 Separation of heteronuclear powder patterns 210
 6.6.3 \(^1\)H–\(^{13}\)C Pake patterns in unlabelled solids 210
 6.6.4 \(^{13}\)C–\(^{13}\)C dipolar recovery at the magic angle (DRAMA) 211
 6.6.5 Rotational-echo double resonance (REDOR) 212
 6.6.6 \(^1\)H-wideline separation (WISE) 213
6.7 Correlation experiments 216
 6.7.1 Homonuclear \(^{13}\)C chemical-shift correlation for single crystals 216
 6.7.2 Heteronuclear correlation of isotropic chemical shifts 217
 6.7.3 Correlation of static \(^{13}\)C chemical-shift and \(^{13}\)C–\(^1\)H dipolar patterns 220
 6.7.4 Correlation of static \(^{13}\)C chemical-shift and \(^{13}\)C–\(^1\)H dipolar patterns under SASS conditions 225
 6.7.5 Correlation of \(^{13}\)C chemical-shift and \(^{13}\)C–\(^1\)H dipolar interactions under slow MAS 226
 6.7.6 Zero-field correlation experiments 227
6.8 2D Relaxation NMR 227
6.9 Separation vs. correlation – Part II 231
6.10 References 233

CHAPTER SEVEN
Polymer Dynamics: Multidimensional Exchange Experiments 236
7.1 Introduction 236
7.2 Exchange by segmental reorientations 239
7.3 2D exchange powder spectra for vanishing asymmetry parameter (\(\eta = 0\)) 240
7.4 The reorientation-angle distribution 244
7.5 2D Exchange powder spectra for \(\eta \neq 0\) 247
7.6 The symmetry of the exchange patterns 249
7.7 Exchange patterns for rotation around a principal axis 250
7.8 2D exchange spectra of oriented samples 250
7.9 Model-independent information from 2D exchange spectra 254
7.10 3D Exchange NMR 255
 7.10.1 The relevance of 3D exchange NMR in complex solid materials 255
 7.10.2 Two-dimensional cross-sections of 3D spectra 257
7.11 The MAS sideband-exchange 2D experiment 259
7.12 Helical jumps in polymer crystallites detected by 2D and 3D NMR 260
7.13 Characterization of dynamics in the glassy state by 2D exchange NMR 268
7.14 Dynamical exchange of isotropic shifts 269
 7.14.1 Chemical exchange in low-molar-mass solids 270
 7.14.2 Isotropic-shift exchange in PE by chain diffusion in polyethylene 271
7.15 References 274
CONTENTS

CHAPTER EIGHT
Multidimensional Exchange NMR Above the Glass Transition

8.1 Dynamics above the glass transition
8.2 2D exchange experiments
8.3 Exchange near \(T_g \) in inhomogeneous systems
8.4 Reduced 4D experiment
8.5 Trans-gauche isomerizations above \(T_g \)
8.6 3D exchange NMR above \(T_g \)
8.7 Summary of results of multidimensional exchange NMR above \(T_g \)
8.8 References

CHAPTER NINE
Multidimensional Spectra, Correlation Functions, and Stochastic Processes

9.1 2D Exchange spectra and correlation functions
9.1.1 Basics on thermal motions and correlation functions
9.1.2 Simple and space–time correlation functions
9.1.3 Exchange NMR signals vs. correlation functions in neutron scattering
9.1.4 Time-dependent orientational autocorrelation functions \(C_L(t) \)
9.1.5 How to determine \(C_L(t) \) from 2D exchange spectra
9.1.6 Non-ergodicity
9.1.7 Helical-jump correlation functions
9.2 Distributions of correlation times
9.3 Stochastic processes and probabilities
9.3.1 Markov processes
9.3.2 Information on stochastic processes from 3D exchange spectra
9.3.3 Analysis of the reduced 4D experiment
9.4 The exchange matrix
9.5 References

CHAPTER TEN
Time-Domain Signals for Multidimensional Spectra

10.1 Introduction
10.2 Pulse sequences for exchange spectroscopy
10.2.1 Amplitude modulation for \(S = \frac{1}{2} \)
10.2.2 Pulse sequences for 2D exchange \(^{13}\text{C} \) NMR
10.2.3 Stimulated echoes in the 2D time signals
10.2.4 Exchange pulse sequences for \(^2\text{H} \) quadrupolar coupling
10.2.5 \(T_1 \) relaxation during the mixing time
10.2.6 Limits to the mixing times
10.3 Motion during evolution and detection periods
10.4 2D MAS exchange time signals
10.4.1 Time signals in the sideband-exchange experiment
10.4.2 MAS ‘time-reversed’ signal

References
x

CONTENTS

10.4.3 Correlation of isotropic chemical shifts with totally isotropic evolution 336
10.5 Practical hints for 2D spectroscopy of polymers 337
10.6 References 340

CHAPTER ELEVEN
Multidimensional Exchange Spectra: Simulations, Models, Angle Distributions 341
11.1 Motivation 341
11.2 Basic technicalities of spectral simulations 341
11.3 2D powder spectra for axially symmetric coupling (η = 0) 342
11.4 Reorientation-angle distributions for various models 343
 11.4.1 Random jumps 344
 11.4.2 Uniaxial rotational diffusion 344
 11.4.3 Isotropic rotational diffusion 347
11.5 Spectra for non-axially-symmetric coupling (η > 0) 349
 11.5.1 Simulation for discrete jumps 349
 11.5.2 Simulation for random jumps (η > 0) 350
 11.5.3 Simulation for isotropic rotational diffusion (η > 0) 351
11.6 Model-independent extraction of angular distributions from NMR spectra 352
11.7 Linear least-squares fits 356
11.8 References 358

CHAPTER TWELVE
Determination of Order in Polymers by Multidimensional NMR 360
12.1 Introduction 360
12.2 Angles and coordinate systems 361
12.3 Moment expansions 363
 12.3.1 Moment expansions for a uniaxial system 363
 12.3.2 P\textsubscript{a}-Weighted spectra for the moment expansion 367
 12.3.3 Full moment expansion for non-axial systems 369
12.4 Synchronized-MAS 2D experiment: site-resolved orientation measurement 371
 12.4.1 Molecular orientation and sidebands intensities in the sync-MAS 2D spectrum 372
 12.4.2 Analysis for systems with transverse isotropy 377
 12.4.3 Macroscopically uniaxial systems without transverse isotropy 379
 12.4.4 Sync-MAS 2D studies of oriented polymers 380
12.5 3D spectra with side-band separated orientation spectra 384
12.6 3D correlation of order and motion 385
12.7 The DECODER technique 388
 12.7.1 Introduction and motivation 389
 12.7.2 Relation between orientational and spectral features 389
 12.7.3 Analogies of DECODER NMR and wide-angle X-ray scattering 396
CHAPTER THIRTEEN
Domain Sizes and Internuclear Distances From Spin Diffusion and Dipolar Couplings

13.1 Introduction

13.2 1H spin diffusion
 13.2.1 1H experiments: principles and 1D spectra
 13.2.2 The CRAMPS 2D exchange experiment
 13.2.3 1H spin diffusion with 13C detection
 13.2.4 2D vs. selective 1D 1H–13C spectra
 13.2.5 WISE 2D experiments with 1H spin diffusion
 13.2.6 Selective saturation transfer
 13.2.7 Short review of 1H spin-diffusion studies

13.3 Analysis of 1H spin-diffusion data
 13.3.1 Initial rate, interfacial area, and domain sizes
 13.3.2 Analytical solutions
 13.3.3 Lattice calculations of diffusion
 13.3.4 1H spin diffusion compared with small-angle scattering

13.4 1H spin diffusion data at long mixing times
 13.4.1 Effects of T_1 relaxation
 13.4.2 How to obtain complete-exchange intensities

13.5 13C spin diffusion
 13.5.1 Low-abundance problem in short-range structural analysis
 13.5.2 2D exchange powder patterns
 13.5.3 13C spin exchange between resolved sites
 13.5.4 Speeding-up of 13C spin diffusion
 13.5.5 Radio-frequency-driven spin diffusion
 13.5.6 Rotor-driven 13C spin diffusion
 13.5.7 Rotational resonance

13.6 References

APPENDICES

Appendix A Trigonometric and Geometric Relations, Complex Numbers
 A.1 Simple trigonometry
 A.2 Complex numbers and complex exponentials
 A.3 Miscellaneous

Appendix B Rotations and Euler Angles
 B.1 Active vs. passive rotations
 B.2 Euler angles and rotation matrices
 B.3 Rotation of functions
 B.4 Rotations in spin space
 B.5 Irreducible tensors and Wigner rotation matrices
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C</td>
<td>Evolution of 2H Density-Operator Terms Under Pulses and Quadrupole Coupling</td>
<td>453</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Useful Tools in Matrix Algebra</td>
<td>454</td>
</tr>
<tr>
<td>D.1</td>
<td>Introduction</td>
<td>454</td>
</tr>
<tr>
<td>D.2</td>
<td>The principal-value problem</td>
<td>454</td>
</tr>
<tr>
<td>D.3</td>
<td>Diagonalization and the principal-axes system</td>
<td>455</td>
</tr>
<tr>
<td>D.4</td>
<td>How to simplify exponential matrices by diagonalization</td>
<td>456</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Differential Conservation of the Integral and the Jacobian Determinant</td>
<td>457</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Ellipses, Ellipsoids, and the Lissajou Representation</td>
<td>461</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Truncation of Hamiltonians</td>
<td>463</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>466</td>
</tr>
</tbody>
</table>