Mechanisms of Protein Folding

EDITED BY

Roger H. Pain
Department of Biochemistry and Genetics
University of Newcastle upon Tyne,
Newcastle upon Tyne NE2 4HH

© IRL PRESS
at
OXFORD UNIVERSITY PRESS
Oxford New York Tokyo
1 The protein folding problem
THOMAS E. CREIGHTON

1. The problem 1
2. The stable conformational states of proteins 1
 2.1 The unfolded state (U) 2
 2.2 The fully folded, native state (N) 4
 2.3 The so-called ‘molten globule’ state 4
3. General properties of protein folding transitions 5
 3.1 Stability of the folded state 5
 3.2 Co-operativity of folding 8
4. Kinetic aspects of folding 9
 4.1 Experimental evidence for kinetic determination of folding 9
 4.2 Models of folding 11
5. Experimental observations of protein unfolding and refolding 15
 5.1 Kinetic analysis of complex reactions 15
 5.2 Protein unfolding 17
 5.3 Protein refolding 18
6. A general scheme for protein folding 21
References 22

2 Early stages of protein folding
HEINRICH RODER and GÜLNUR A. ELÖVE

1. Introduction 26
2. Hydrogen exchange and NMR approaches 27
 2.1 Model peptides and denatured proteins 27
 2.2 Native proteins 28
3. Folding events on the millisecond time-scale
 3.1 Time-resolved CD
 3.2 Amide protection
 3.3 Fluorescence
 3.4 Initial stages of cytochrome c folding
4. Intermediates with partially assembled tertiary structure
 4.1 Cytochrome c
 4.2 Hen lysozyme
 4.3 Ribonuclease A
 4.4 Barnase
 4.5 Ubiquitin
 4.6 Dihydrofolate reductase
 4.7 Formation of ligand binding sites during folding
5. Late stages
 5.1 Parallel folding pathways
 5.2 Haem ligation in cytochrome c folding
6. Concluding remarks
Acknowledgements
References

3 The contribution of the molten globule model
 HENRIETTE CHRISTENSEN and ROGER H. PAIN
1. The molten globule model
2. Experimentally observed molten globules
 2.1 The stable molten globule
 2.2 The kinetic molten globule
3. Molten globules as earlier intermediates?
 3.1 The framework model
 3.2 The molten globule as a model for early folding
4. The molten globule as a functional entity
 4.1 Protein transport
4 Proline isomerization as a rate-limiting step

BARRY T. NALL

1. The importance of kinetics 80
2. Simplicity at equilibrium but complex kinetics 82
3. Proline isomerization and slow folding reactions: the hypothesis 83
4. Experimental evidence 85
 4.1 Comparison of properties of proline isomerization and slow folding 85
 4.2 Double-jump assays 85
 4.3 Isomer-specific proteolysis 89
 4.4 Site-directed mutants 90
 4.5 Effects of structure 92
 4.6 Ribonuclease A 92
5. Structural intermediates and slow refolding reactions 94
6. Are slow phases real folding reactions? 95
7. Enzymatic catalysis of proline isomerization and slow folding reactions 96
Acknowledgements 98
References 99

5 The formation of native disulfide bonds

H. F. GILBERT

1. The nature of the problem 104
2. Chemistry of the disulfide bond 105
 2.1 Thiol/disulfide exchange 106
 2.2 Equilibria and kinetics 106
 2.3 Competing equilibria 108
 2.4 Effects of structure on equilibria and kinetics 109
3. The mechanism(s) of oxidative protein folding 111
 3.1 The pathway is complex 112
 3.2 Early folding steps—do disulfides dictate the structure or vice versa? 114
 3.3 The role of non-native structure during oxidative folding 115
7 Assembly of multi-subunit structures

Nicholas C. Price

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>160</td>
</tr>
<tr>
<td>2. The occurrence of multiple subunits</td>
<td>160</td>
</tr>
<tr>
<td>3. The functional significance of multiple subunits</td>
<td>162</td>
</tr>
<tr>
<td>3.1 Regulation of activity</td>
<td>162</td>
</tr>
<tr>
<td>3.2 Generation of new activities</td>
<td>163</td>
</tr>
<tr>
<td>3.3 Formation of large structures</td>
<td>164</td>
</tr>
<tr>
<td>3.4 Stabilization of folded polypeptide chains</td>
<td>165</td>
</tr>
<tr>
<td>3.5 Other factors</td>
<td>165</td>
</tr>
<tr>
<td>4. Forces involved in subunit association</td>
<td>165</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>4.2 The energetics of subunit association</td>
<td>166</td>
</tr>
<tr>
<td>4.3 Specific interactions involved in association</td>
<td>166</td>
</tr>
<tr>
<td>4.4 Burial of amino acid side-chains on association</td>
<td>168</td>
</tr>
<tr>
<td>5. Experimental methods for studying subunit association</td>
<td>169</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>5.2 Controlled dissociation of multi-subunit proteins</td>
<td>169</td>
</tr>
<tr>
<td>5.3 The refolding of unfolded proteins</td>
<td>172</td>
</tr>
<tr>
<td>6. Results of studies of subunit association</td>
<td>176</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>176</td>
</tr>
<tr>
<td>6.2 Subunit association in yeast phosphoglycerate mutase</td>
<td>177</td>
</tr>
<tr>
<td>6.3 Properties of intermediates in the folding and assembly pathway</td>
<td>178</td>
</tr>
<tr>
<td>6.4 Specificity of association between subunits</td>
<td>181</td>
</tr>
<tr>
<td>6.5 Competing reactions during folding and assembly</td>
<td>184</td>
</tr>
<tr>
<td>7. Some aspects of subunit association in vivo</td>
<td>186</td>
</tr>
</tbody>
</table>

References

8 How the protein folds in the cell

Roman Hlodan and F. Ulrich Hartl

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The protein folding problem in vivo</td>
<td>194</td>
</tr>
<tr>
<td>2. The relationship of protein folding to biosynthesis</td>
<td>195</td>
</tr>
<tr>
<td>2.1 Protein folding and translation</td>
<td>195</td>
</tr>
<tr>
<td>2.2 Protein folding and translocation across membranes</td>
<td>196</td>
</tr>
<tr>
<td>2.3 The aggregation of proteins in the cell</td>
<td>197</td>
</tr>
</tbody>
</table>
2.4 The effect of glycosylation upon folding 198
2.5 Folding and proteolytic processing 198

3. The role of enzymes that catalyse folding in the cell 200
 3.1 Protein disulfide isomerase 200
 3.2 Catalysis of folding by peptidyl prolyl cis–trans isomerase 201

4. The molecular chaperone proteins 201
 4.1 The hsp70 family 203
 4.2 Members of the hsp60 family 209
 4.3 Other families of molecular chaperones 214

5. Protein folding as it may occur in the cell 217
Acknowledgements 219
References 219

9 Protein folding in biotechnology 229
DAVID R. THATCHER and ANTONY HITCHCOCK

1. Introduction 229
 1.1 Academic pursuit to big business 229
 1.2 Recombinant protein misfolding: the inclusion body phenomenon 230

2. Structure and formation of inclusion bodies in recombinant E. coli 232
 2.1 Structure and properties 232
 2.2 Factors affecting inclusion body formation 232
 2.3 Inclusion body formation and the heat shock response 235

3. Recovery of inclusion bodies 235
 3.1 Cell breakage 235
 3.2 Inclusion body recovery 236
 3.3 Selective chemical extraction 238

4. Recovery of biologically active protein from inclusion bodies 239
 4.1 The process challenge 239
 4.2 Solubilization 239
 4.3 Renaturation 242

5. Further processing and scale up issues 250
 5.1 How pure? 250
 5.2 Process development: how much and at what cost? 251

6. Quality assurance and the regulatory climate 253
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Pros and cons of inclusion body renaturation process strategies</td>
<td>253</td>
</tr>
<tr>
<td>8. Future prospects</td>
<td>254</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>255</td>
</tr>
<tr>
<td>References</td>
<td>255</td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>