HOMOLOGY
THE HIERARCHICAL BASIS OF COMPARATIVE BIOLOGY

Edited by
Brian K. Hall
Department of Biology
Dalhousie University
Halifax, Nova Scotia
Canada

ACADEMIC PRESS
A Division of Harcourt Brace & Company
San Diego New York Boston London Sydney Tokyo Toronto
CONTENTS

Contributors xv

INTRODUCTION
Brian K. Hall
I. Some Unanswered Questions 2
II. Richard Owen and Homology 3
III. History of the Term and Concept 4
IV. A Phylogenetic Definition of Homology 7
V. Embryonic Development and Homology 11
VI. Continuity of Information and Homology 13
VII. Homology in Molecular Biology 14
VIII. Homology and Behavior 14
IX. Homology and Plant Biology 15
References 17

1. RICHARD OWEN AND THE CONCEPT OF HOMOLOGY
Alec L. Panchen
I. Introduction 22
II. The Archetype 28
III. The Definition of Homology 39
IV. Definitions, Criteria, and Explanations 45
A. Richard Owen 45
B. Similar Embryonic Development 46
2. HOMOLOGY, TOPOLOGY, AND TYPOLOGY: THE HISTORY OF MODERN DEBATES

Olivier Rieppel

I. Introduction 64
II. Defining Homology 65
 A. Similarity Due to Common Descent 65
 B. Biological Homology and Developmental Constraints 66
III. Recognizing Homology 68
IV. Connectivity versus Topology in the Search for Homology 72
 A. Preformation and Epigenesis 73
 B. Harvey and Malpighi 74
 C. Polydactyly and Hyperphalangy 77
 D. Atomism versus Epigenetics 81
V. Changing Identities and Taxic Homology 84
 A. The Tetrapod Tarsus 84
VI. Transformational and Taxic Approaches 88
VII. Homology, Topology, and Individuality 90
VIII. The Hierarchy of Types 93
IX. Conclusion 94
 References 95

3. HOMOLOGY AND SYSTEMATICS

G. Nelson

I. Introduction 102
II. Cladistics 103
 A. Homology as Synapomorphy 104
 B. Data and Nodes 104
 C. Retrospective 107
III. Contentions 110
 A. True Criteria 110
 B. Golden Age 111
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Homology in a Straitjacket 113</td>
<td></td>
</tr>
<tr>
<td>D. Symplesiomorphy and Paraphyly 114</td>
<td></td>
</tr>
<tr>
<td>E. Latent Homology 115</td>
<td></td>
</tr>
<tr>
<td>F. Homoplasy 116</td>
<td></td>
</tr>
<tr>
<td>G. Idealistic Morphology 117</td>
<td></td>
</tr>
<tr>
<td>H. Paraphyly and Darwinism 119</td>
<td></td>
</tr>
<tr>
<td>I. Taxon and Homology as Relationship 120</td>
<td></td>
</tr>
<tr>
<td>J. Taxa as Individuals 120</td>
<td></td>
</tr>
<tr>
<td>K. Causes 122</td>
<td></td>
</tr>
<tr>
<td>L. Taxa as Ancestors 124</td>
<td></td>
</tr>
<tr>
<td>M. Monophyly 126</td>
<td></td>
</tr>
<tr>
<td>N. Characters as Ancestors 127</td>
<td></td>
</tr>
<tr>
<td>O. Minimum of Three 128</td>
<td></td>
</tr>
<tr>
<td>P. Binary and Multistate Data 129</td>
<td></td>
</tr>
<tr>
<td>Q. Orthology and Paralogy 131</td>
<td></td>
</tr>
<tr>
<td>R. Truisms 135</td>
<td></td>
</tr>
<tr>
<td>IV. Biogeography 135</td>
<td></td>
</tr>
<tr>
<td>V. Conclusions 137</td>
<td></td>
</tr>
<tr>
<td>References 138</td>
<td></td>
</tr>
</tbody>
</table>

4. HOMOLOGY, FORM, AND FUNCTION
George V. Lauder

I. Introduction 152

II. Homology and Structure 153

III. Searching for the Locus of Homology 156
 A. Structure as the Locus of Homology 157
 B. The Nervous System as the Locus of Homology 159
 C. Developmental Patterns as the Locus of Homology 161
 D. Genetic Data as the Locus of Homology 162
 E. Connections among Traits as a Locus of Homology 163
 F. Synthesis 164

IV. Homology and Phylogeny 166
 A. Phylogeny, Taxa, and Characters 166
 B. Phylogeny, Homology, and Hierarchy 169
 C. Phylogeny and Iterative Homology 174

V. Homology and Function 178
 A. Case Study: The Evolution of Muscle Function in Ray-Finned Fishes 180
 B. Synthesis: Homology and Function 186
<table>
<thead>
<tr>
<th>VI. Conclusions</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>189</td>
</tr>
</tbody>
</table>

5. CAN BIOMETRICAL SHAPE BE A HOMOLOGOUS CHARACTER?
Fred L. Bookstein

I. Historical Introduction 198
II. Earlier Versions of the Argument 204
 A. On Not Being Able to Get Past D'Arcy Thompson 204
 B. The Shape Nonmonotonicity Theorem 206
 C. Shape Space for a Set of Landmarks 207
 D. Partial Warps: A Tentative Basis of Shape Descriptors 209
III. Getting to the Root of the Dilemma 211
 A. The Notion of Curvature in Differential Geometry and Cladistics 213
IV. The Incommensurability of Biometrics and Systematics 218
V. Conclusions 224
References 225

6. HOMOLOGY, DEVELOPMENT, AND HEREDITY
Brian Goodwin

I. Introduction 230
II. Homology: An Unsolved Problem 231
 A. The Historical Definition 231
 B. Homology and Genes 232
III. Homology as Equivalence 233
 A. Hierarchies and Sets 234
 B. Rules of Transformation 235
IV. Generative Invariants 236
 A. The Model 236
 B. Fish Fins and Tetrapod Limbs 238
 C. Toward a Theory of Biological Form 238
V. Gene Action 239
VI. Unitary Morphogenetic Fields 242
VII. Conclusions 243
References 244