Fractals for the Classroom
Part One
Introduction to Fractals and Chaos

With 289 Illustrations

Evan Maletsky Terry Perciante Lee Yunker
NCTM Advisory Board

National Council of Teachers of Mathematics

Springer-Verlag
Authors

Heinz-Otto Peitgen
Institut für Dynamische Systeme
Universität Bremen
D-2800 Bremen 33
Federal Republic of Germany and
Department of Mathematics
Florida Atlantic University
Boca Raton, FL 33432
USA

Hartmut Jürgens
Institut für Dynamische Systeme
Universität Bremen
D-2800 Bremen 33
Federal Republic of Germany

Dietmar Saupe
Institut für Dynamische Systeme
Universität Bremen
D-2800 Bremen 33
Federal Republic of Germany

NCTM Advisory Board

Evan Maletsky
Department of Mathematics and
Computer Science
Montclair State College
Upper Montclair, NJ 07043
USA

Terry Perciante
Department of Mathematics
Wheaton College
Wheaton, IL 60187-5593
USA

Lee Yunker
Department of Mathematics
West Chicago Community High School
West Chicago, IL 60185
USA

Cover design by Claus Hösellebarth.

TI-81 Graphics Calculator is a product of Texas Instruments Inc.
Casio is a registered trademark of Casio Computer Co. Ltd.
Macintosh is a registered trademark of Apple Computer Inc.
Microsoft BASIC is a product of Microsoft Corp.

Library of Congress Cataloging-in-Publication Data
Peitgen, Heinz-Otto, 1945--
Fractals for the classroom / Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe.
p. cm.
Includes bibliographical references and index.
QA614.86.P45 1991
514'.74--dc20
91-11998

Printed on acid-free paper.

Published in cooperation with the National Council of Teachers of Mathematics (NCTM).
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA) except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Negatives supplied by the authors.
Printed and bound by Hamilton Printing Co., Rensselaer, NY.
Printed in the United States of America.
9 8 7 6 5 4 3 2 (Corrected second printing, 1993)
Contents

Preface VII

Authors XII

Foreword: Fractals and the Rebirth of Experimental Mathematics

Benoit B. Mandelbrot 1

1 The Backbone of Fractals: Feedback and the Iterator 17

1.1 The Principle of Feedback 21
1.2 The Multiple Reduction Copy Machine 28
1.3 Basic Types of Feedback Processes 33
1.4 The Parable of the Parabola — Or: Don’t Trust Your Computer 44
1.5 Chaos Wipes Out Every Computer 58
1.6 Program of the Chapter: Graphical Iteration 71

2 Classical Fractals and Self-Similarity 75

2.1 The Cantor Set 79
2.2 The Sierpinski Gasket and Carpet 91
2.3 The Pascal Triangle 96
2.4 The Koch Curve 103
2.5 Space-Filling Curves 109
2.6 Fractals and the Problem of Dimension 121
2.7 The Universality of the Sierpinski Carpet 128
2.8 Julia Sets 138
2.9 Pythagorean Trees 142
2.10 Program of the Chapter: Sierpinski Gasket by Binary Addresses 148

3 Limits and Self-Similarity 151

3.1 Similarity and Scaling 154
3.2 Geometric Series and the Koch Curve 164
3.3 Corner the New from Several Sides: Pi and the Square Root of Two 171
3.4 Fractals as Solutions of Equations 187
3.5 Box Self-Similarity: Grasping the Limit 199
3.6 Program of the Chapter: The Koch Curve 206
4 Length, Area and Dimension: Measuring Complexity and Scaling Properties 209
 4.1 Finite and Infinite Length of Spirals 211
 4.2 Measuring Fractal Curves and Power Laws 218
 4.3 Fractal Dimension 229
 4.4 The Box-Counting Dimension 240
 4.5 Borderline Fractals: Devil's Staircase and Peano Curve 245
 4.6 Program of the Chapter: The Cantor Set and Devil's Staircase 251

5 Encoding Images by Simple Transformations 255
 5.1 The Multiple Reduction Copy Machine Metaphor 257
 5.2 Composing Simple Transformations 260
 5.3 Classical Fractals by IFSs 271
 5.4 Image Encoding by IFSs 278
 5.5 Foundation of IFS: The Contraction Mapping Principle 284
 5.6 Choosing the Right Metric 294
 5.7 Composing Self-Similar Images 298
 5.8 Breaking Self-Similarity and Self-Affinity: Networking with MRCMs 304
 5.9 Program of the Chapter: Iterating the MRCM 315

6 The Chaos Game: How Randomness Creates Deterministic Shapes 319
 6.1 The Fortune Wheel Reduction Copy Machine 323
 6.2 Addresses: Analysis of the Chaos Game 330
 6.3 Tuning the Fortune Wheel 345
 6.4 Random Number Generator Pitfall 356
 6.5 Adaptive Cut Methods 365
 6.6 Program of the Chapter: Chaos Game for the Fern 375

7 Irregular Shapes: Randomness in Fractal Constructions 379
 7.1 Randomizing Deterministic Fractals 381
 7.2 Percolation: Fractals and Fires in Random Forests 386
 7.3 Random Fractals in a Laboratory Experiment 399
 7.4 Simulation of Brownian Motion 406
 7.5 Scaling Laws and Fractional Brownian Motion 418
 7.6 Fractal Landscapes 425
 7.7 Program of the Chapter: Random Midpoint Displacement 431

Bibliography 435

Index 444