Methods in Enzymology

Volume 99

Hormone Action

Part F
Protein Kinases

EDITED BY
Jackie D. Corbin
HOWARD HUGHES MEDICAL INSTITUTE
VANDERBILT UNIVERSITY SCHOOL OF MEDICINE
NASHVILLE, TENNESSEE

Joel G. Hardman
DEPARTMENT OF PHARMACOLOGY
VANDERBILT UNIVERSITY SCHOOL OF MEDICINE
NASHVILLE, TENNESSEE

1983

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London
Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto
Hormone action.

(Methods in enzymology; v. 36-

In pes. C and D Hardman's name is first; pt. F
edited by Jackie D. Corbin and Joel G. Hardman.
Includes bibliographical references and indexes.
CONTENTS: pt. A. Steroid hormones.--pt. B. Peptide
hormones.--[etc.]--pt. F. Protein kinases.
1. Enzymes. 2. Hormones. 3. Cyclic nucleotides.
I. Hardman, Joel G., joint author. II. Title. III. Series: Methods in enzymology; v. 36-40.
[DNLM: VI NE9615K v.36 etc. / WK 1O2 HB115]
QF601.M49 vol. 36-40 S74.1925s [S74.19'2] 74-10710
ISBN 0-12-181999-X (v. 39)

PRINTED IN THE UNITED STATES OF AMERICA
83 84 85 86 9 8 7 6 5 4 3 2 1
Table of Contents

CONTRIBUTORS TO VOLUME 99 .. ix
PREFACE ... xiii
VOLUMES IN SERIES ... xv

Section I. General Methodology

1. Assays of Protein Kinase ROBERT ROSKOSKI, JR. 3
2. Measurement of Chemical Phosphate in Proteins JANICE E. BUSS AND JAMES T. STULL 7
3. Removal of Phosphate from Proteins by the Re-verse Reaction DAVID A. FLOCKHART 14
4. Measurement of Hormone-Stimulated Phosphorylation in Intact Cells JAMES C. GARRISON 20
5. Peptide Mapping and Purification of Phosphopptides Using High-Performance Liquid Chromatography HENNING JUHL AND THOMAS R. SODERLING 37

Section II. Purification and Properties of Specific Protein Kinases

A. Cyclic Nucleotide-Dependent Protein Kinases

6. Catalytic Subunit of cAMP-Dependent Protein Kinase ERWIN M. REIMANN AND RICHARD A. BEHAM 51
7. Regulatory Subunits of Bovine Heart and Rabbit Skeletal Muscle cAMP-Dependent Protein Kinase Isozymes STEPHEN R. RANNELS, ALFREDA BEASLEY, AND JACKIE D. CORBIN 55
8. cGMP-Dependent Protein Kinase THOMAS M. LINCOLN 62
9. Insect (cAMP–cGMP)-Dependent Protein Kinase ALEXANDER VARDANIS 71
10. Preparation of Partially Purified Protein Kinase Inhibitor KEITH K. SCHLENDER, JENNIFER L. TYMA, AND ERWIN M. REIMANN 77
11. Inhibitor Protein of the cAMP-Dependent Protein Kinase: Characteristics and Purification SUSAN WHITEHOUSE AND DONAL A. WALSH 80
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Use of NMR and EPR to Study cAMP-Dependent Protein Kinase</td>
</tr>
<tr>
<td>13.</td>
<td>Synthesis of Oligopeptides for the Study of Cyclic Nucleotide-Dependent Protein Kinases</td>
</tr>
<tr>
<td>14.</td>
<td>Affinity Labeling of cAMP-Dependent Protein Kinases</td>
</tr>
<tr>
<td>15.</td>
<td>Photoaffinity Labeling of the Regulatory Subunit of cAMP-Dependent Protein Kinase</td>
</tr>
<tr>
<td>16.</td>
<td>Use of 1,N6-Etheno-cAMP as a Fluorescent Probe to Study cAMP-Dependent Protein Kinase</td>
</tr>
<tr>
<td>17.</td>
<td>Using Analogs to Study Selectivity and Cooperativity of Cyclic Nucleotide Binding Sites</td>
</tr>
<tr>
<td>18.</td>
<td>Reversible Autophosphorylation of Type II cAMP-Dependent Protein Kinase: Distinction between Intramolecular and Intermolecular Reactions</td>
</tr>
<tr>
<td>19.</td>
<td>Use of Immunological Approaches to Identify a Brain Protein Kinase Isozyme</td>
</tr>
<tr>
<td>20.</td>
<td>Using Mutants to Study cAMP-Dependent Protein Kinase</td>
</tr>
<tr>
<td>21.</td>
<td>Protein Modulation of Cyclic Nucleotide-Dependent Protein Kinases</td>
</tr>
<tr>
<td>22.</td>
<td>Substrate-Directed Regulation of cAMP-Dependent Phosphorylation</td>
</tr>
<tr>
<td>23.</td>
<td>Use of Microinjection Techniques to Study Protein Kinases and Protein Phosphorylation in Amphibian Oocytes</td>
</tr>
<tr>
<td>24.</td>
<td>Determination of the cAMP-Dependent Protein Kinase Activity Ratio in Intact Tissues</td>
</tr>
<tr>
<td>25.</td>
<td>Radiolabeling and Detection Methods for Studying Metabolism of Regulatory Subunit of cAMP-Dependent Protein Kinase I in Intact Cultured Cells</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

B. Calcium-Dependent Protein Kinases

26. Phosphorylase Kinase from Rabbit Skeletal Muscle
 Hei Sook Sul, Bernadette Dirden, Karen L. Angelos, Patrick Hallenbeck, and Donal A. Walsh 243

27. Cardiac Phosphorylase Kinase: Preparation and Properties
 K.-F. Jesse Chan and Donald J. Graves 259

28. Separation of the Subunits of Muscle Phosphorylase Kinase
 Donald J. Graves 268

29. Use of Peptide Substrates to Study the Specificity of Phosphorylase Kinase Phosphorylation
 Patrick Hallenbeck, and Donal A. Walsh 279

30. Smooth Muscle Myosin Light Chain Kinase
 Michael P. Walsh, Susan Hinkins, Renata Darowska, and David J. Hartshorne 279

31. Calcium-Activated, Phospholipid-Dependent Protein Kinase (Protein Kinase C) from Rat Brain
 Ushio Kikkawa, Ryoji Minakuchi, Yoshimi Takai, and Yasutomi Nishizuka 288

32. Liver Calmodulin-Dependent Glycogen Synthase Kinase
 M. Elizabeth Payne and Thomas R. Soderling 299

C. Cyclic Nucleotide and Calcium-Independent Protein Kinases

33. Casein Kinase I
 Gary M. Hathaway, Polycena T. Tuazon, and Jolinda A. Traugh 308

34. Casein Kinase II
 Gary M. Hathaway and Jolinda A. Traugh 317

35. Pyruvate Dehydrogenase Kinase from Bovine Kidney
 Flora H. Pettit, Stephen J. Yeaman, and Lester J. Reed 331

36. Glycogen Synthase Kinase-3 from Rabbit Skeletal Muscle
 Brian A. Hemmings and Philip Cohen 337

37. Double-Stranded RNA-Dependent eIF-2α Protein Kinase
 Ray Petrushyn, Daniel H. Levin, and Irving M. London 346

38. Rhodopsin Kinase
 Hitoshi Shichi, Robert L. Somers, and Katsuhiko Yamamoto 362
D. Tyrosine-Specific Protein Kinases

40. Characterization of the Abelson Murine Leukemia Virus-Encoded Tyrosine-Specific Protein Kinase
 Jean Yin Jen Wang and David Baltimore 373

41. Purification of the Receptor for Epidermal Growth Factor from A-431 Cells: Its Function as a Tyrosyl Kinase
 Stanley Cohen 379

42. Detection and Quantification of Phosphotyrosine in Proteins
 Jonathan A. Cooper, Bartholomew M. Sefton, and Tony Hunter 387

43. Base Hydrolysis and Amino Acid Analysis for Phosphotyrosine in Proteins
 Todd M. Martensen and Rodney L. Levine 402

Author Index .. 407

Subject Index ... 421