Photodissociation Dynamics

Spectroscopy and Fragmentation of Small Polyatomic Molecules

Reinhard Schinke

Max-Planck-Institut für Strömungsforschung, Göttingen
Contents

Preface

1 Introduction
- 1.1 Types of photodissociation
- 1.2 Why photodissociation dynamics?
- 1.3 Full and half collisions
- 1.4 From the spectrum to state-selected photodissociation
 - 1.4.1 The absorption spectrum
 - 1.4.2 Chemical identities and electronic fragment channels
 - 1.4.3 Vibrational and rotational product state distributions
 - 1.4.4 Angular distributions and vector correlations
 - 1.4.5 Photodissociation of single quantum states
 - 1.4.6 The various levels of photodissociation cross sections
- 1.5 Molecular dynamics and potential energy surfaces
 - 1.5.1 Electronic Schrödinger equation
 - 1.5.2 First example: CH$_3$ONO
 - 1.5.3 Second example: H$_2$O

2 Light absorption and photodissociation
- 2.1 Time-dependent perturbation theory
 - 2.1.1 Coupled equations
 - 2.1.2 Photon-induced transition rate
- 2.2 The absorption cross section
- 2.3 Born-Oppenheimer approximation
- 2.4 Bound-bound transitions in a linear triatomic molecule
 - 2.4.1 Jacobi or scattering coordinates
 - 2.4.2 Variational calculation of bound-state energies and wavefunctions
- 2.5 Photodissociation
 - 2.5.1 Dissociation channels
2.5.2 Continuum basis 43
2.5.3 Photodissociation cross sections 48
2.5.4 Total dissociation wavefunction 50

3 Time-independent methods 52
3.1 Close-coupling approach for vibrational excitation 53
3.1.1 Close-coupling equations 53
3.1.2 Bound-free dipole matrix elements 55
3.2 Close-coupling approach for rotational excitation 56
3.3 Approximations 60
3.3.1 Adiabatic approximation, appropriate for vibrational excitation 61
3.3.2 Sudden approximation, appropriate for rotational excitation 67
3.4 Numerical methods 69

4 Time-dependent methods 72
4.1 Time-dependent wavepacket 73
4.1.1 Autocorrelation function and total absorption spectrum 73
4.1.2 Evolution of the wavepacket 76
4.1.3 Energy domain and time domain 78
4.1.4 Partial photodissociation cross sections 81
4.2 Numerical methods 82
4.2.1 Temporal propagation 82
4.2.2 Spatial propagation 83
4.2.3 Time-dependent close-coupling 84
4.3 Approximations 86
4.3.1 Gaussian wavepackets 86
4.3.2 Time-dependent SCF 88
4.3.3 Classical path methods 89
4.4 A critical comparison 90

5 Classical description of photodissociation 93
5.1 Equations of motion, trajectories, and excitation functions 94
5.2 Phase-space distribution function 98
5.3 Classical absorption and photodissociation cross sections 102
5.3.1 Formal definitions 102
5.3.2 Monte Carlo calculations 104
5.4 Examples 105

6 Direct photodissociation: The reflection principle 109
6.1 One-dimensional reflection principle 110
6.1.1 The classical view 110
6.1.2 The time-dependent view 112
6.1.3 The time-independent view 114
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Multi-dimensional reflection principle</td>
<td>115</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The time-dependent view</td>
<td>115</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The adiabatic view</td>
<td>117</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Broad vibrational bands</td>
<td>118</td>
</tr>
<tr>
<td>6.3</td>
<td>Rotational reflection principle</td>
<td>120</td>
</tr>
<tr>
<td>6.3.1</td>
<td>An ultrasimple classical model</td>
<td>121</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Mapping of the potential anisotropy</td>
<td>125</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Examples</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>Vibrational reflection principle</td>
<td>128</td>
</tr>
<tr>
<td>6.5</td>
<td>Epilogue</td>
<td>133</td>
</tr>
<tr>
<td>7</td>
<td>Indirect photodissociation: Resonances and recurrences</td>
<td>134</td>
</tr>
<tr>
<td>7.1</td>
<td>A phenomenological prologue</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Decay of excited states</td>
<td>138</td>
</tr>
<tr>
<td>7.3</td>
<td>Time-dependent view: Recurrences</td>
<td>143</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Resonant absorption and Lorentzian line shapes</td>
<td>143</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Example: Internal vibrational excitation</td>
<td>147</td>
</tr>
<tr>
<td>7.4</td>
<td>Time-independent view: Resonances</td>
<td>152</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Stationary wavefunctions and assignment</td>
<td>152</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Adiabatic picture and decay mechanism</td>
<td>155</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Relation to resonances in full collisions</td>
<td>159</td>
</tr>
<tr>
<td>7.5</td>
<td>Resolution in the energy and in the time domain</td>
<td>160</td>
</tr>
<tr>
<td>7.6</td>
<td>Other types of resonant internal excitation</td>
<td>163</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Excitation of bending motion</td>
<td>163</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Excitation of symmetric and anti-symmetric stretch motion</td>
<td>168</td>
</tr>
<tr>
<td>7.7</td>
<td>Epilogue</td>
<td>173</td>
</tr>
<tr>
<td>8</td>
<td>Diffuse structures and unstable periodic orbits</td>
<td>177</td>
</tr>
<tr>
<td>8.1</td>
<td>Large-amplitude symmetric and anti-symmetric stretch motion</td>
<td>179</td>
</tr>
<tr>
<td>8.1.1</td>
<td>A collinear model system</td>
<td>179</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Unstable periodic orbits</td>
<td>184</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Examples</td>
<td>189</td>
</tr>
<tr>
<td>8.2</td>
<td>Large-amplitude bending motion</td>
<td>193</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Breakdown of adiabatic separability</td>
<td>193</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Dissociation guided by an unstable periodic orbit</td>
<td>196</td>
</tr>
<tr>
<td>8.3</td>
<td>Epilogue</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Vibrational excitation</td>
<td>202</td>
</tr>
<tr>
<td>9.1</td>
<td>The elastic case: Franck-Condon mapping</td>
<td>203</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Franck-Condon distribution</td>
<td>203</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Examples</td>
<td>207</td>
</tr>
<tr>
<td>9.2</td>
<td>The inelastic case: Dynamical mapping</td>
<td>208</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Energy redistribution</td>
<td>208</td>
</tr>
<tr>
<td>9.2.2</td>
<td>The photodissociation of CH₃I and CF₃I</td>
<td>210</td>
</tr>
</tbody>
</table>
9.3 Symmetric triatomic molecules 213
9.4 Adiabatic and nonadiabatic decay 217

10 Rotational excitation I 222
 Sources of rotational excitation 222
 What are the right coordinates? 223
10.1 The elastic case: Franck-Condon mapping 225
 10.1.1 Rotational Franck-Condon factors 226
 10.1.2 Example: Photodissociation of H₂O(A) 230
10.2 The inelastic case: Dynamical mapping 234
 10.2.1 Photodissociation of H₂O₂ 235
 10.2.2 Photodissociation of H₂O(B) 238
10.3 Rotational distributions following the decay of long-lived states 241
 10.3.1 Mapping of the transition-state wavefunction 241
 10.3.2 Statistical limit 250
10.4 The impulsive model 251
10.5 Thermal broadening of rotational state distributions 255
 10.5.1 The photodissociation of H₂O₂ 256
 10.5.2 Other examples 257

11 Rotational excitation II 261
11.1 General theory of rotational excitation for J ≠ 0 262
 11.1.1 Hamiltonian, expansion functions, and coupled equations 262
 11.1.2 Rotational states of asymmetric top molecules 266
 11.1.3 Selection rules and detailed state-to-state cross sections 267
11.2 Population of Λ-doublet and spin-orbit states 270
 11.2.1 The eigenstates of OH(²Π) 271
 11.2.2 Preferential Λ-doublet population in the photodissociation of H₂O(A¹Λ, B¹₁B₁) 272
 11.2.3 Statistical and nonstatistical population of spin-orbit manifolds 275
11.3 Dissociation of single rotational states 277
11.4 Vector correlations 283
 11.4.1 E₀-µ-v correlation 283
 11.4.2 E₀-µ-j correlation 285
 11.4.3 v-j correlation 286
11.5 Correlation between product rotations 287

12 Dissociation of van der Waals molecules 293
12.1 Vibrational predissociation 296
12.2 Rotational predissociation 301
 12.2.1 Characterization of rotational eigenstates 302
 12.2.2 Decay mechanisms 304
12.3 Product state distributions 307
Contents

12.3.1 Final vibrational state distributions 307
12.3.2 Final rotational state distributions 308

13 Photodissociation of vibrationally excited states 314
13.1 Reflection structures 316
 13.1.1 One-dimensional case 316
 13.1.2 Two-dimensional case 318
13.2 Photodissociation of vibrationally excited H_2O 319
 13.2.1 Calculation and characterization of the bound states of H_2O 319
 13.2.2 Absorption spectra 320
 13.2.3 Final vibrational state distributions 323
13.3 State-selective bond breaking 324

14 Emission spectroscopy of dissociating molecules 331
14.1 Theoretical approaches 333
 14.1.1 The time-independent view 334
 14.1.2 The time-dependent view 335
14.2 Emission spectroscopy of dissociating H_2O(\tilde{A}) 337
14.3 Raman spectra for H_2S 344

15 Nonadiabatic transitions in dissociating molecules 347
15.1 The adiabatic representation 349
15.2 The diabatic representation 352
15.3 Examples 356
 15.3.1 The photodissociation of CH_3I 357
 15.3.2 The photodissociation of H_2S 359

16 Real-time dynamics of photodissociation 366
16.1 Coherent excitation 368
 16.1.1 Coupled equations 368
 16.1.2 Pulse duration and spectral width 371
16.2 Examples 374

References 380
Index 412