HETEROCYCLIC COMPOUNDS

Six-membered heterocyclic compounds with (a) a nitrogen atom common to two or more fused rings; (b) one hetero-atom in each of two fused rings. Six-membered ring compounds with two hetero-atoms from Groups VI B, or V B and VI B of the Periodic Table, respectively. Isoquinoline, lupanine and quinolizidine alkaloids.
CONTRIBUTORS TO THIS VOLUME

N. CAMPBELL, O.B.E., PH.D., D.SC., F.R.S.E.
Department of Chemistry, The University, Edinburgh EH9 3JH

S. F. DYKE, D.SC., PH.D., B.SC., F.R.I.C.
School of Chemistry, University of Bath, Bath BA2 7AY

M. SAINSbury, A.C.T.(Brst.), PH.D., F.R.I.C.
School of Chemistry, University of Bath, Bath BA2 7AY

H. C. S. WOOD, B.SC., PH.D., F.R.I.C., F.R.S.E.
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL

R. WRIGGLESWORTH, B.SC., D.PHIL.
Chemical Research Laboratory, Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

R. E. FAIRBAIRN, B.SC., PH.D., C.chem., F.R.I.C.
formerly of Research Department, Dyestuffs Division, I.C.I. Ltd., Manchester 9 (Index)
Heterocyclic Compounds: Six-membered heterocyclic compounds with (a) a nitrogen atom common to two or more fused rings; (b) one hetero-atom in each of two fused rings. Six-membered ring compounds with two hetero-atoms from Groups VI B, or V B and VI B of the Periodic Table, respectively. Isoquinoline, lupinane and quinolizidine alkaloids.

Chapter 36. The Isoquinoline Alkaloids
by S. F. Dyke

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Derivatives of isoquinoline and tetrahydroisoquinoline</td>
<td>2</td>
</tr>
<tr>
<td>a.</td>
<td>The simple tetrahydroisoquinolines</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination and synthesis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(ii) Biosynthesis</td>
<td>5</td>
</tr>
<tr>
<td>b.</td>
<td>1-Phenyltetrahydroisoquinolines</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(i) The cryptostyline</td>
<td>7</td>
</tr>
<tr>
<td>c.</td>
<td>The 1-benzylisoquinolines</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination and synthesis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(ii) Cheryline</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(ii) Absolute configuration</td>
<td>23</td>
</tr>
<tr>
<td>d.</td>
<td>The cularines</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(ii) Absolute configuration</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(iii) Biosynthesis</td>
<td>31</td>
</tr>
<tr>
<td>2.</td>
<td>The dibenzopyrrocoline alkaloids</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(ii) Synthesis</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(iii) Biosynthesis</td>
<td>38</td>
</tr>
<tr>
<td>3.</td>
<td>Pavines and isopavines</td>
<td>38</td>
</tr>
<tr>
<td>a.</td>
<td>Pavine alkaloids</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(i) Configuration</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(ii) Synthesis</td>
<td>45</td>
</tr>
<tr>
<td>b.</td>
<td>Isopavine alkaloids</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>(i) Configuration</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>(ii) Synthesis</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>(iii) Biosynthesis of pavines and isopavines</td>
<td>53</td>
</tr>
<tr>
<td>4.</td>
<td>The bisbenzylisoquinolines</td>
<td>55</td>
</tr>
<tr>
<td>a.</td>
<td>Structure determination</td>
<td>59</td>
</tr>
<tr>
<td>b.</td>
<td>Biosynthesis</td>
<td>68</td>
</tr>
<tr>
<td>c.</td>
<td>Chemical synthesis</td>
<td>68</td>
</tr>
<tr>
<td>5.</td>
<td>Aporphinoids</td>
<td>72</td>
</tr>
<tr>
<td>a.</td>
<td>Aporphines</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>(ii) Chemical synthesis</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>(iii) Biosynthesis of aporphines</td>
<td>92</td>
</tr>
<tr>
<td>b.</td>
<td>The proaporphines</td>
<td>100</td>
</tr>
<tr>
<td>c.</td>
<td>The oxoaporphines</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>(i) Structure determination</td>
<td>106</td>
</tr>
</tbody>
</table>
6. The protoberberines ... 110
 a. Occurrence and structural variations 111
 b. Structure determination 113
 c. Some reactions of protoberberine derivatives 124
 d. Synthesis .. 127
 (i) Type 1 syntheses, 128 – (ii) Type 2 syntheses, 136 –
 (iii) Type 3 syntheses, 139 –
 (iv) Type 4 syntheses, 141 –
 e. Biosynthesis ... 141

7. The protopine alkaloids .. 145
 a. Structure determination 147
 b. Synthesis .. 149
 (i) Chemical synthesis, 149 – (ii) Biosynthesis, 151 –

8. The phthalideisoquinoline alkaloids 152
 a. Structure determination 153
 (i) (–)α-Narcotine, 153 – (ii) (–)β-Hydrastine, 154 –
 b. Absolute configuration 154
 c. Synthesis .. 158
 (i) Chemical synthesis, 158 – (ii) Biosynthesis, 160 –

9. The rhoeadines and papaverrubines 163
 a. Structure determination 163
 (i) Relative configuration, 164 – (ii) Absolute configuration, 167 –
 b. Some rearrangement reactions 168
 c. Synthesis .. 168
 (i) Chemical synthesis, 168 – (ii) Biosynthesis, 173 –

10. The benzo[c]phenanthridines 173
 a. Structure and stereochemistry 178
 b. Spectral characteristics 184
 c. Synthesis .. 186
 (i) Chemical synthesis, 186 – (ii) Biosynthesis, 194 –

11. The spirobenzylisoquinolines 197
 a. Structure determination 199
 (i) Ochotensine and related alkaloids, 199 – (ii) Other alkaloids, 203 –
 b. Synthesis .. 205
 (i) Biosynthesis, 205 – (ii) Chemical synthesis, 205 –

12. The Ipecacuanha alkaloids 215
 a. Configuration of emetine and related compounds 219
 (i) Emetine, 219 – (ii) Emetine analogues, 224 – (iii) Structure of rubremetine, 227 –
 b. Synthesis of emetine 227
 (i) Chemical synthesis, 227 – (ii) Biosynthesis, 231 –

13. Colchicine .. 232
 a. Structure determination 233
 b. Optical properties .. 241
 (i) Rotation, 241 – (ii) Nuclear magnetic resonance, 242 –
 c. Colchicine-like alkaloids 242
 d. The synthesis of colchicine 244
 (i) Chemical syntheses, 244 – (ii) Biosynthesis, 249 –
14. 1-Phenethylisoquinolines
 a. Simple 1-phenethyltetrahydroisoquinolines 254
 b. Bisphenethyltetrahydroisoquinolines 255
 c. The homoprosaporphines and homoauperphines 255

Chapter 37. Fused Heterocyclic Systems having a Nitrogen Atom in Common to Two or
 More Rings
 by Neil Campbell

1. Indolizines
 a. Indolizine and its derivatives 259
 b. Benzoindolizines 262

2. Quinolizines and their derivatives
 a. Quinolizines 264
 b. Quinolizidine and its derivatives 267
 (i) Quinolizidone and the quinolizidones, 267 – (ii) Benzoquinolizinium ions, 269 –

3. Azepine derivatives containing a bridge nitrogen atom 270

4. Tricyclic compounds with nitrogen common to all three rings
 a. Cyclazines 272
 (iii) Cycl[3.3.3]azine, 274 – (iv) Julolidine and lilolidine, 276 –

5. Bridged ring compounds
 a. Compounds with nitrogen common to two rings 278
 b. Bicyclic systems having a nitrogen bridge 279
 c. Compounds with nitrogen common to three rings 281
 (i) Quinuclidine, 281 –

Chapter 38. Lupinane and Quinolizidine Alkaloids
 by H. C. S. Wood and R. Wrigglesworth

1. Lupinane alkaloids
 a. Bicyclic lupinane alkaloids 286
 b. Phenanthronorlupinane alkaloids 290
 c. Tricyclic lupin alkaloids 292
 (i) Stereochemistry, 294 –
 d. Tetracyclic lupin alkaloids 299
 (i) Anagyrine, lupanine and sparteine alkaloids, 299 – (ii) Matrine-like alkaloids, 319 –

2. Nuphar alkaloids 328

3. Ormosia alkaloids 334

4. Lythraceae alkaloids 338

Chapter 39. Compounds Containing Two Fused Five- and Six-Membered Heterocyclic
 Rings each with One Hetero Atom
 by Neil Campbell

1. Compounds containing two hetero rings fused to an aromatic system 343
 a. Bz-Pyrroloquinolines 343
 b. Phenanthrolines 344
2. Compounds containing two hetero rings fused through adjacent carbon atoms
 a. Furopyridines ... 347
 b. Furoquinolines 348
 c. Pyrano[2,3-b]pyridines 352
 (i) 2H-Pyrano[3,2-b]pyridine and derivatives, 352 – (ii) 1H-Pyrano[4,3-b]pyri-
 dines, 353 – (iii) 2H-Pyrano[3,2-c]pyridines, 354 – (iv) 1H-Pyrano[3,4-c]pyri-
 dines, 354 –
 d. Pyrrolopyridines or azaindoles 355
 e. Carbolines or pyridindoles 359
 f. Dihydro-furoquinolines and -pyranoquinolines 362
 g. Naphthyridines or diazanaphthalenes 366

Chapter 40. Compounds Containing a Six-Membered Ring having two Hetero-atoms from
Group VI B of the Periodic Table: Dioxanes, Oxathianes and Dithianes
by Malcolm Sainsbury

1. Dioxanes and related compounds ... 375
 a. 1,2-Dioxanes, 1,2-dioxins and related structures 376
 b. 1,3-Dioxanes and related compounds 377
 (i) 1,3-Dioxanes, 377 – (ii) 1,3-Dioxins, 380 – (iii) 2,4-Dihydro-1,3-benzodiox-
 in and related compounds, 380 –
 c. 1,4-Dioxanes and 1,4-dioxins 382
 (i) 1,4-Dioxanes, 382 – (ii) 1,4-Dioxins, 385 – (iii) 1,4-Benzodioxin and its
derivatives, 385 – (iv) Lignan derivatives, 387 – (v) Polychlorinated dibenzo-1,4-
dioxins, 387 –

2. Dithanes, dithiins and their benzo derivatives 389
 a. 1,2-Dithianes, 1,2-dithiins and their benzo derivatives ... 389
 (i) 1,2-Dithianes, 389 – (ii) 1,2-Dithiin and derivatives, 390 – (iii) Benzdithiins,
1,3-Dithianes, 2,4-dihydro-1,3-dithiins and their benzo derivatives 393
 (i) 1,3-Dithianes, 393 – (ii) 2,4-Dihydro-1,3-dithiins, 399 –
 c. 1,4-Dithiane, 1,4-dithiin and their benzo derivatives 400
 (i) 1,4-Dithiane and simple derivatives, 400 – (ii) 1,4-Dithiins, 403 – (iii) Benzo-
1,4-dithiins, 406 – (iv) Thianthrene and its derivatives, 407 –

3. Oxathianes and oxathiins .. 411
 a. 1,2-Oxathianes and oxathiins 411
 (i) 1,2-Oxathianes, 411 – (ii) Dihydro 1,2-oxathiins and 1,2-oxathiins, 412
 b. 1,3-Oxathianes .. 414
 c. 1,4-Oxathianes, 2,4-dihydro-1,4-oxathiins and 1,4-oxathiins 415
 (i) 1,4-Oxathianes, 415 – (ii) Dihydro-1,4-oxathiins and 1,4-oxathiins, 418
 d. Benzoxathiins ... 420
 (i) 1,2-Benzoaxathiin derivatives, 420 – (ii) 2,1-Benzoxathiin derivatives, 421
 (iii) 2,3-Benzoxathiin derivatives, 421 – (iv) Dihydro-1,3-benzoxathiins, 422 –
 (v) 2,4-Dihydro-3,1-benzoxathiin derivatives, 422 – (vi) 1,4-Benzoxathiin, 423
 (vii) Phenoaxathiin (phenathioxin or dibenzo-1,4-oxathiin), 424 –

4. Miscellaneous compounds containing selenium or tellurium atoms 425
Chapter 41. Compounds Containing a Six-Membered Ring with Two Hetero Atoms from Groups V and VI respectively, of the Periodic Table. Oxazines, Thiazines and their Analogues

by MALCOLM SAINSBURY

1. Oxazines

a. 1,2-Oxazines
(i) 6H-1,2-Oxazines, 427 - (ii) 2H- and 4H-1,2-Oxazines, 429 - (iii) Dihydro- and tetrhydro-1,2-oxazines, 430 -
b. 1,3-Oxazines
(i) 4H-1,3-Oxazines, 432 - (ii) 1,3-Oxazin-1-ium salts, 434 - (iii) Hydro-1,3-oxazines, 437 -
c. 1,4-Oxazines and related compounds
(i) 1,4-Oxazines, 466 - (ii) Dihydro-1,4-oxazines, 447 - (iii) Tetrahydro-1,4-oxazines, 448 - (iv) Oxo-morpholines (morpholones), 453 -

2. Benzoxazines

a. 1,2-Benzoxazines
b. 1,3-Benzoxazines and their hydro derivatives
(i) 2H-1,3-Benzoxazines, 456 - (ii) 4H-1,3-Benzoxazines, 460 -
c. 1,4-Benzoxazines and their hydro derivatives
(i) 1,4-Benzoxazines, 461 - (ii) Dihydro-1,4-benzoxazines, 462 - (iii) Dihydro-1,4-benzoxazines, 463 - (iv) 1H-2,3-Benzoxazines, 465 - (v) 4H-3,1-Benzoxazines and related compounds, 467 -

3. Phenoxazines

a. Methods of synthesis
b. Phenoxazine and its simple derivatives
(i) Nitrophenoxazines, 475 - (ii) Aminophenoxazines, 475 - (iii) 3-Methoxyphenoxazines, 476 - (iv) Phenoxazinocarboxylic acids, 476 - (v) Halogenophenoxazines, 477 - (vi) N-Alkylphenoxazines and N-arylphenoxazines, 477 - (vii) Acylphenoxazines, 479 -
c. Oxidation products of phenoxazines
(i) Phenoxazinones and phenoxazonium salts, 479 -
d. Naturally occurring phenoxazine derivatives

e. Benzophenoxazines and benzophenoxazinones

4. Thiazines and related compounds

a. 1,2-Thiazines and their hydro derivatives
b. 1,3-Thiazines and related compounds
(i) 4H-1,3-Thiazines, 488 - (ii) 1,3-Thiazinin salts, 489 - (iii) Dihydro-2H-1,3-thiazines, 490 - (iv) 5,6-Dihydro-4H-1,3-thiazines and tetrahydro-1,3-thiazines, 493 -
c. 1,4-Thiazines and their hydro derivatives
(i) Thiazines, 495 - (ii) Dihydro-1,4-thiazines, 496 - (iii) Tetrahydro-1,4-thiazines, 498 -

5. Benzothiazines

a. 1,2-2,1- and 2,3-Benzothiazines and their hydro derivatives
(i) 2H-1,2-Benzothiazines, 501 - (ii) 1H-2,1-Benzothiazines, 503 - (iii) HDH-2,3-Benzothiazine derivatives, 503 -
b. 1,3- and 3,1-Benzothiazines and their hydro derivatives
(i) 1,3-Benzothiazines, 504 - (ii) 4H-3,1-Benzothiazine derivatives, 506 -
c. 1,4-Benzothiazines and their hydro derivatives
(i) 2H-1,4-Benzothiazines, 509 - (ii) 2H-1,4-Benzothiazinium salts, 511 - (iii) 2H-1,4-Benzothiazin-3(4H)-ones, 512 - (iv) Phenothiomorpholines, 514 - (v) 4H-1,4-Benzothiazines, 514 -
XIV

CONTENTS

6. Phenothiazines
 a. Methods of synthesis
 b. Physical properties
 c. Chemical properties
 (i) Oxidation, phenothiazinyl radical cation and phenothiazonium (phenazathionium) salts, 521
 (ii) Electrophilic substitution, 524
 d. Phenothiazine derivatives
 (i) Phenothiazine homologues, 527
 (ii) Halogenophenothiazines, 528
 (iii) Nitrophenothiazines, 529
 (iv) N-Alkyl- and N-acyl-derivatives, 529
 (v) Aminophenothiazines, 531
 (vi) Hydroxyphenothiazines, 532
 (vii) 3H-Phenothiazine derivatives, 532
 (viii) Desulphurization of phenothiazines, 534
 (ix) Azaphenothiazines, 534

Index

537