Contents

List of contributors v
Preface ix

I. THE EARLY STAGES OF NERVOUS SYSTEM DEVELOPMENT:
NEUROGENESIS AND NEURONAL MIGRATION – J. ALTMAN

1. Introduction 1
2. The loci of neuron production 3
   2.1. The primary neuroepithelium 3
   2.2. Compartmentation in the neuroepithelium 3
   2.3. Mosaicism in the neuroepithelium 8
   2.4. Secondary germinal matrices 8
3. The chronology of neuron production 10
   3.1. Precision in the temporal order of neurogenesis 10
   3.2. Sequential order in neurogenesis 10
4. Neuronal migration and pauses in sojourn zones 15
   4.1. Translocation and different patterns of migration 15
      4.1.1. Passive translocation and migration along a straight path 15
      4.1.2. Cell-sorting migration 15
      4.1.3. Migration along curved paths and over long distances 16
      4.1.4. Divergent and convergent migration 19
   4.2. Sojourn zones in transitional cortex 21
   4.3. The lateral cortical stream 23
5. Conclusion 27
6. Acknowledgments 27
7. List of abbreviations 27
8. References 29

II. DEVELOPMENT OF CENTRAL CHOLINERGIC NEURONS – K. SEMBA

1. Introduction 33
2. The whole brain 34
3. Basal forebrain 34
   3.1. Time of origin 35
   3.2. Onset of cholinergic phenotype expression and migration 35
      3.2.1. AChE histochemistry 35
      3.2.2. ChAT immunohistochemistry 40
      3.2.3. NGF-receptor immunohistochemistry 40
   3.3. Cellular differentiation and maturation 41
   3.4. Axonal outgrowth 41
      3.4.1. Septohippocampal projections 41
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2. Nucleus basalis magnocellularis-neocortical projections</td>
<td>42</td>
</tr>
<tr>
<td>3.5. Unsettled problems</td>
<td>44</td>
</tr>
<tr>
<td>4. Cerebral cortex</td>
<td>45</td>
</tr>
<tr>
<td>4.1. Hippocampus</td>
<td>45</td>
</tr>
<tr>
<td>4.1.1. Neurochemistry</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2. Cholinergic interneurons</td>
<td>45</td>
</tr>
<tr>
<td>4.1.3. Cholinergic receptors</td>
<td>45</td>
</tr>
<tr>
<td>4.2. Neocortex</td>
<td>45</td>
</tr>
<tr>
<td>4.2.1. Neurochemistry</td>
<td>45</td>
</tr>
<tr>
<td>4.2.2. Cholinergic innervation of the visual cortex</td>
<td>46</td>
</tr>
<tr>
<td>4.2.3. Transient expression of AChE in thalamocortical fibers</td>
<td>46</td>
</tr>
<tr>
<td>4.2.4. Intrinsic neurons of the cortex</td>
<td>47</td>
</tr>
<tr>
<td>4.2.5. Receptors</td>
<td>47</td>
</tr>
<tr>
<td>5. Caudate putamen</td>
<td>48</td>
</tr>
<tr>
<td>5.1. Neurochemistry</td>
<td>48</td>
</tr>
<tr>
<td>5.2. Time of origin</td>
<td>48</td>
</tr>
<tr>
<td>5.3. Expression of cholinergic phenotype and morphological maturation</td>
<td>50</td>
</tr>
<tr>
<td>5.4. Receptor binding</td>
<td>50</td>
</tr>
<tr>
<td>6. Mesopontine tegmentum</td>
<td>52</td>
</tr>
<tr>
<td>7. Spinal cord</td>
<td>52</td>
</tr>
<tr>
<td>7.1. Time of origin</td>
<td>52</td>
</tr>
<tr>
<td>7.2. Cholinergic phenotype and cellular differentiation</td>
<td>54</td>
</tr>
<tr>
<td>8. Conclusions</td>
<td>54</td>
</tr>
<tr>
<td>9. Acknowledgments</td>
<td>56</td>
</tr>
<tr>
<td>10. References</td>
<td>56</td>
</tr>
</tbody>
</table>

### III. DEVELOPMENT OF DOPAMINE-CONTAINING SYSTEMS IN THE CNS – A. KALSBEEK, P. VOORN AND R.M. BUIJS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>63</td>
</tr>
<tr>
<td>2. Visualization of dopamine</td>
<td>64</td>
</tr>
<tr>
<td>3. Development of the mesotelencephalic dopaminergic system</td>
<td>65</td>
</tr>
<tr>
<td>3.1. Cell groups in the ventral mesencephalon</td>
<td>66</td>
</tr>
<tr>
<td>3.2. The mesostriatal innervation</td>
<td>68</td>
</tr>
<tr>
<td>3.3. The mesocortical innervation</td>
<td>80</td>
</tr>
<tr>
<td>4. Development of hypothalamic-dopaminergic systems</td>
<td>94</td>
</tr>
<tr>
<td>5. Development of dopamine-containing structures in the brainstem</td>
<td>99</td>
</tr>
<tr>
<td>6. Development of other dopaminergic systems</td>
<td>101</td>
</tr>
<tr>
<td>7. Dopaminergic systems in the human fetus</td>
<td>105</td>
</tr>
<tr>
<td>8. Acknowledgments</td>
<td>106</td>
</tr>
<tr>
<td>9. References</td>
<td>106</td>
</tr>
</tbody>
</table>
IV. IMMUNOCYTOCHEMICAL DISTRIBUTION OF AROMATIC L-AMINO ACID DECARBOXYLASE (AADC) IN RAT EMBRYOS
– C.B. JAEGER AND G. TEITELMAN

1. Introduction 113
2. Localization of D groups in the brain 114
   2.1. D groups in embryos at 15 days of gestation 114
   2.2. D groups in embryos at 16 days of gestation (Figs. 3 and 4) 117
   2.3. D groups in embryos at 19 days of gestation 119
3. Localization of D groups in the periphery 126
4. Summary and discussion 127
5. Acknowledgments 128
6. List of abbreviations 128
7. References 131

V. PHENYLETHANOLAMINE N-METHYLTRANSFERASE – THE ADRENALINE-SYNTHESIZING ENZYME – G.A. FOSTER

1. Introduction 133
2. Immunohistochemical analysis of prenatal PNMT-LI and TH-LI ontogeny 134
3. Prenatal regulation of PNMT and TH expression 144
4. Neurochemical analysis of prenatal development of adrenergic neurons of the medulla oblongata 147
5. Immunohistochemical analysis of postnatal PNMT-LI development 150
6. Summary 151
7. List of abbreviations 151
8. References 154

VI. ONTOGENY OF HISTAMINE-IMMUNOREACTIVE NEURONS IN THE CNS – P. PANULA, A. KINNUNEN, M.S. AIRAKSINEN, M. AHONEN, O. HäPPÖLÄ AND E. CASTREN

1. Introduction 157
2. Biochemical analysis of histamine during ontogenesis 158
   2.1. Brain 158
   2.2. Other tissues 161
3. Morphological analysis of developing histamine-containing systems in mammals 161
   3.1. Tuberal histaminergic neurons in rat brain 161
   3.2. Transient histamine-immunoreactive neurons in the CNS 162
   3.3. Histamine-immunoreactive nerve fibers in the rat CNS 168
   3.4. Mast cells in the rat brain 168
   3.5. Histamine-immunoreactive neurons in the CNS of other species 168
   3.6. Peripheral nervous system 171
   3.7. Phylogenetic aspects 173
4. Conclusions 173
VII. POSTNATAL CHANGES OF GLUTAMINASE-LIKE IMMUNOREACTIVITY IN THE OLFACTORY BULB, THALAMUS, CEREBRAL CORTEX AND CEREBELLUM OF THE RAT
– T. KAN EKO AND N. MIZUNO

1. Introduction
2. Materials and methods
3. Results
   3.1. Olfactory bulb and pyriform cortex
   3.2. Thalamus
   3.3. Cerebral neocortex
   3.4. Hippocampus and entorhinal cortex
   3.5. Cerebellum and precerebellar nuclei
4. Discussion
5. Summary
6. Acknowledgment
7. References

VIII. DEVELOPMENT OF NEURONAL ELEMENTS WITH SUBSTANCE P-LIKE IMMUNOREACTIVITY IN THE CENTRAL NERVOUS SYSTEM – M. SAKANAKA

1. Introduction
2. Methodology
3. Ontogeny of neuronal elements with SPI in the brain
   3.1. Rat brain
      3.1.1. General organization
      3.1.2. Development of SPI in specific brain regions
   3.2. Mouse brain
   3.3. Human brain
   3.4. Rabbit brain
   3.5. *Xenopus* embryonic brain
4. Development of SPI in the spinal cord and dorsal root ganglion
   4.1. Rat
   4.2. Human
   4.3. Opossum
   4.4. Chicken
   4.5. *Xenopus*
5. Factors that may affect the development of neuronal elements with SPI
6. Summary and conclusions
7. Acknowledgments
8. References
IX. ONTOGENETIC AND DIFFERENTIAL EXPRESSION OF THE PREPROENKEPHALIN AND PREPRODYNORPHIN GENES IN THE RAT BRAIN – Y. MORITA

1. Introduction .......................................................... 257
2. Methods ................................................................... 258
   2.1. Animals and preparation of tissues ................. 258
   2.2. Probes ................................................................. 258
   2.3. In-situ hybridization histochemistry (ISHH) .... 259
3. Results ..................................................................... 259
   3.1. Differential expression of PPE and PPD genes 259
   3.2. Ontogenesis of the central PPE- and PPDergic systems 265
      3.2.1. Telencephalon ............................................. 265
      3.2.2. Diencephalon ............................................. 277
      3.2.3. Mesencephalon ......................................... 281
      3.2.4. Rhombencephalon ................................... 283
      3.2.5. Cerebellum ................................................ 287
4. Discussion ................................................................. 288
   4.1. Differential expression of PPE and PPD genes 288
   4.2. Ontogenesis of PPE and PPD gene expression 289
   4.3. Possible functions of endogenous opioids in the developing brain 290
5. Conclusions ................................................................. 291
6. Acknowledgments ....................................................... 291
7. List of abbreviations .................................................. 291
8. References ................................................................. 292


1. Introduction .......................................................... 297
2. Ontogeny of POMC-derived peptides in the brain 297
   2.1. β-END-IR ......................................................... 298
   2.2. ACTH-IR ......................................................... 300
   2.3. γ-MSH-IR ....................................................... 303
   2.4. α-MSH-IR ....................................................... 310
   2.5. General discussion ........................................... 311
3. Ontogeny of POMC-derived peptides in the pituitary 313
   3.1. α-MSH ........................................................... 313
   3.2. ACTH-IR ......................................................... 314
   3.3. β-END and other β-lipotropin (LPH)-related peptides 315
   3.4. γ-MSH-IR ....................................................... 316
   3.5. POMC gene expression .................................... 316
   3.6. General discussion ........................................... 317
4. Brain-pituitary interaction ......................................... 319
5. Acknowledgment ...................................................... 319
6. References ............................................................... 319
XI. ONTOGENY OF CALCITONIN GENE-RELATED PEPTIDE (CGRP)
- S. INAGAKI

1. Introduction 325
2. Ontogeny of CGRP-like immunoreactive (CGRPI) structures 326
   2.1. Embryonic day 16 (E16) 326
   2.2. Embryonic days 18–19 (E18–E19) 326
   2.3. Embryonic day 20 (E20) 326
   2.4. Embryonic day 22 (E22)–postnatal day 1 (P1) 326
   2.5. Postnatal days 2–7 (P2–P7) 327
   2.6. Postnatal days 8–14 (P8–P14) 338
   2.7. Postnatal days 15–56 (P15–P56) 338
   2.8. Cerebellum 347
   2.9. Spinal cord 347
3. General features of CGRP receptors 350
   3.1. Binding to brain homogenates 350
   3.2. Binding to tissue sections 350
   3.3. Autoradiography 351
4. Ontogeny of CGRP receptors 352
   4.1. Receptor autoradiography 352
     4.1.1. Forebrain and diencephalon 357
     4.1.2. Posterior thalamus and midbrain 358
     4.1.3. Inferior colliculus and brainstem 358
5. Discussion 359
   5.1. Development of CGRPI structures 359
   5.2. Development of CGRP binding sites 361
   5.3. Development of CGRP projections 361
   5.4. Comparison of the localizations of CGRPI nerve fibers and CGRP binding sites 362
   5.5. Comparison of the development of CGRP and other peptides 362
6. List of abbreviations 363
7. References 365

XII. ONTOGENY OF THE CENTRAL SOMATOSTATINERGIC SYSTEM
- S. SHIOSAKA

1. Introduction 369
2. Biosynthesis of somatostatin 369
3. General profiles of the ontogeny of somatostatin-immunoreactive structures in the brain 370
   3.1. Prenatal ontogeny of somatostatinergic neurons 370
   3.2. Postnatal ontogeny of somatostatinergic neurons 370
   3.3. Prenatal ontogeny of somatostatinergic fibers 373
   3.4. Postnatal ontogeny of somatostatinergic fibers 376
4. Ontogeny of somatostatinergic neurons in specific brain areas 376
   4.1. Olfactory bulb 376
   4.2. Cerebral cortex 376
   4.3. Hippocampus 378
4.4. Hypothalamus
4.5. Piriform cortex, bed nucleus of the stria terminalis, entopeduncular nucleus, and amygdala
4.6. Other areas of the forebrain and upper brainstem
4.7. Inferior and superior colliculus
4.8. Lateral lemniscal nucleus including paralemniscal nucleus
4.9. Periaqueductal gray, sphenoid nucleus, suprageniculate nucleus, prepositus hypoglossal nucleus and its ventral extension (lateral to the FLM), trigeminal spinal tract nucleus (medial part), and solitary tract nucleus
4.10. Reticulotegmental nucleus of the pons, the dorsal and ventral cochlear nuclei, and marginal part of the trigeminal spinal tract nucleus
4.11. Cerebellum
4.12. Spinal cord
4.13. Other areas in the lower brainstem
5. Ontogeny of somatostatin receptors
6. Conclusion
7. Acknowledgments
8. List of abbreviations
9. References

XIII. ONTOGENY OF NEUROTENSIN IMMUNOREACTIVITY AND mRNA IN THE RAT CENTRAL NERVOUS SYSTEM – H. KIYAMA, M. SATO AND P.C. EMSON

1. Introduction
2. General overview of neurotensin development in the CNS
3. Telencephalon
   3.1. Olfactory system
   3.2. Cerebral cortex and amygdaloid complex
   3.3. Hippocampus
   3.4. Basal ganglia and septum
4. Diencephalon
   4.1. Thalamus
   4.2. Hypothalamus
5. Mesencephalon and pons
6. Medulla
7. Spinal cord
8. Development of neurotensin binding sites
9. Conclusion
10. List of abbreviations
11. References

Contents

4.4. Hypothalamus 380
4.5. Piriform cortex, bed nucleus of the stria terminalis, entopeduncular nucleus, and amygdala 382
4.6. Other areas of the forebrain and upper brainstem 382
4.7. Inferior and superior colliculus 382
4.8. Lateral lemniscal nucleus including paralemniscal nucleus 385
4.9. Periaqueductal gray, sphenoid nucleus, suprageniculate nucleus, prepositus hypoglossal nucleus and its ventral extension (lateral to the FLM), trigeminal spinal tract nucleus (medial part), and solitary tract nucleus 391
4.10. Reticulotegmental nucleus of the pons, the dorsal and ventral cochlear nuclei, and marginal part of the trigeminal spinal tract nucleus 391
4.11. Cerebellum 391
4.12. Spinal cord 391
4.13. Other areas in the lower brainstem 392
5. Ontogeny of somatostatin receptors 392
6. Conclusion 392
7. Acknowledgments 392
8. List of abbreviations 393
9. References 395

1. Introduction 399
2. General overview of neurotensin development in the CNS 400
3. Telencephalon 401
   3.1. Olfactory system 401
   3.2. Cerebral cortex and amygdaloid complex 403
   3.3. Hippocampus 406
   3.4. Basal ganglia and septum 408
4. Diencephalon 410
   4.1. Thalamus 410
   4.2. Hypothalamus 411
5. Mesencephalon and pons 416
6. Medulla 420
7. Spinal cord 420
8. Development of neurotensin binding sites 423
9. Conclusion 425
10. List of abbreviations 426
11. References 427

xvii
Contents

XIV. ONTOGENY OF CHOLECYSTOKININ IN THE CENTRAL NERVOUS SYSTEM – H.-J. CHO AND K. JOO

1. Introduction 433
2. Materials and methods 434
   2.1. Experimental animals and tissue preparation 434
   2.2. Immunohistochemical procedure 434
   2.3. Preparation and specificity of antiserum 434
   2.4. Terminology 435
3. Results 435
   3.1. Ontogeny of the CCK-8 neuron system of forebrain and upper brainstem 435
      3.1.1. Embryonic period 435
      3.1.2. Postnatal period 437
   3.2. Ontogeny of the CCK-8 neuron system of the lower brainstem 445
      3.2.1. Embryonic period 445
      3.2.2. Postnatal period 445
4. Discussion 447
5. List of abbreviations 452
6. References 454

XV. VASOACTIVE INTESTINAL POLYPEPTIDE AND PEPTIDE HISTIDINE ISOLEUCINE – K. HARES AND G.A. FOSTER

1. Introduction 457
2. Radioimmunoassay 458
3. In-situ hybridization 460
4. Immunohistochemistry 460
5. Development of PHI-LI and VIP-LI in the rat central nervous system 460
   5.1. Embryonic period 460
   5.2. Postnatal period 465
6. Summary 469
7. Discussion 469
8. List of abbreviations 471
9. References 473

XVI. DEVELOPMENT OF CORTICOTROPIN-RELEASING FACTOR IN RAT BRAIN – S. DAIKOKU AND S. HISANO

1. Introduction 477
2. Anatomical distribution of CRF immunoreactivity in adult animals 477
3. An overview of developing CRF neuron systems in the brain 481
4. Materials and methods 482
   4.1. Ontogenetic development of CRF neuron systems in the rat brain 482
      4.1.1. Light microscopy 482
      4.1.2. Electron microscopy 483
      4.1.3. Immunostaining 483
XIX. ONTOGENY OF GONADOTROPIN-RELEASING HORMONE-
CONTAINING NEURONAL SYSTEMS IN MAMMALS – L. JENNES
AND M. SCHWANZEL-FUKUDA

1. Introduction 573
2. The nervus terminalis 574
3. Development of the opossum GnRH system 574
   3.1. Three months postnatal 577
   3.2. Hypothalamus and preoptic area 577
4. Development of the mouse GnRH system 578
   4.1. Autoradiography 581
5. Development of the rat GnRH system 581
   5.1. Embryonic day 17 581
   5.2. Embryonic day 18 583
   5.3. Embryonic day 19 583
   5.4. Day of birth (P0) 585
6. Development of the guinea pig GnRH system 588
   6.1. Embryonic day 30 588
   6.2. Embryonic day 35 588
   6.3. Embryonic days 40–45 591
   6.4. Embryonic days 50–60 591
7. Development of the rhesus macaque GnRH system 591
8. Discussion 592
9. Acknowledgments 595
10. List of abbreviations 595
11. References 596

xx
### XX. GALANIN – A.R. SIZER AND G.A. FOSTER

1. Introduction 599  
2. Experimental procedures 600  
3. Results 601  
   3.1. Prenatal ages 601  
   3.2. Postnatal ages 601  
      3.2.1. Day 1 601  
      3.2.2. Day 2 601  
      3.2.3. Day 4 601  
      3.2.4. Day 7 601  
      3.2.5. Day 11 606  
      3.2.6. Day 14 606  
      3.2.7. Day 16 608  
      3.2.8. Day 22 609  
      3.2.9. Day 28 609  
      3.2.10. Day 38 611  
      3.2.11. Aged rats 611  
   3.3. Radioimmunoassay 611  
4. Discussion 612  
5. List of abbreviations 612  
6. References 615

### XXI. DEVELOPMENT OF THE SEROTONERGIC SYSTEM IN RAT AND CHICK EMBRYOS – J.A. WALLACE AND J.M. LAUDER

1. Introduction 619  
2. Development of the serotonergic system in the rat 619  
   2.1. Cell bodies 619  
      2.1.1. Brainstem 619  
      2.1.2. Diencephalon 623  
      2.1.3. Spinal cord 623  
   2.2. Axonal projections 625  
      2.2.1. Ascending 625  
      2.2.2. Descending 630  
3. Development of the serotonergic system in the chick 630  
   3.1. Cell bodies 630  
      3.1.1. Brainstem 630  
      3.1.2. Diencephalon 636  
      3.1.3. Spinal cord 636  
   3.2. Axonal projections 639  
      3.2.1. Ascending 639  
      3.2.2. Descending 641  
4. Discussion 642  
5. Acknowledgments 643  
6. References 644

xxi
Contents

XXII. AN OVERVIEW OF THE ONTOGENY OF NEUROTRANSMITTERS AND NEUROMODULATORS IN THE CENTRAL NERVOUS SYSTEM
– M. TOHYAMA

1. General aspects of the development of neurotransmitters and neuromodulators 647
2. Importance of receptors 648
3. What is the 'trophic role of neuroactive substances'?
   3.1. Is cell death the cause of the postnatal decrease of neuroactive substances or their mRNAs? 649
   3.2. Is it possible to reinitiate production of neuroactive substances after the cessation of synthesis during postnatal ontogeny? 649
4. Discrepancies between the distribution of a neuroactive substance and its mRNA during ontogeny 650
5. References 650

SUBJECT INDEX 651