HANDBOOK OF CHEMICAL NEUROANATOMY
Edited by A. Björklund and T. Hökfelt

Volume 8:
ANALYSIS OF NEURONAL MICROCIRCUITS AND SYNAPTIC INTERACTIONS

Editors:
A. BJÖRKLUND
Department of Medical Cell Research, University of Lund, Lund, Sweden

T. HÖKFELT
Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden

F.G. WOUTERLOOD
Laboratory for Anatomy and Embryology, Vrije Universiteit, Amsterdam, The Netherlands

A.N. VAN DEN POL
Section of Neurosurgery, Yale University Medical School, New Haven, CT, U.S.A.

1990
ELSEVIER
Amsterdam – New York – Oxford
Contents

5.5. Characterization of immunoreactivity 39
5.6. Development of new fluorescent labels 40
6. Acknowledgements 40
7. References 41

II. LIGHT AND ELECTRON MICROSCOPIC TRACING OF NEURONAL CONNECTIONS WITH PHASEOLUS VULGARIS-LEUCOAGGLUTININ (PHA-L), AND COMBINATIONS WITH OTHER NEUROANATOMICAL TECHNIQUES – H.J. GROENEWEGEN AND F.G. WOUTERLOOED

1. Introduction 47
1.1. Historical background 47
1.2. Recent developments 48
1.3. The use of lectins as tracers 49
1.4. The tracing properties of the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L) 49
1.5. Chemical characteristics of Phaseolus vulgaris-leucoagglutinin 51
2. Light microscopic tracing with PHA-L 51
2.1. Preparation of the tracer 51
2.2. Application of PHA-L 52
 2.2.1. Iontophoresis 52
 2.2.2. Effect of duration and strength of the current 53
 2.2.3. Pressure injections 55
2.3. Histological and immunohistochemical preparation of the tissue 55
 2.3.1. Fixation: how critical? 55
 2.3.2. Immunohistochemical detection of injected PHA-L 57
 2.3.3. Counterstaining, photography 57
2.4. Uptake and transport of PHA-L 59
 2.4.1. Possible mechanisms of uptake 59
 2.4.2. The injection site 59
 2.4.3. Survival time 61
 2.4.4. Retrograde transport 65
 2.4.5. Uptake by fibers-of-passage 69
 2.4.6. Transsynaptic transport 69
 2.4.7. Maximum distance of transport from the injection site 71
 2.4.8. Transport of PHA-L in peripheral nervous tissue 71
 2.4.9. Neuron-, system- and species specificity 71
2.5. Quantification 72
3. Electron microscopy 73
3.1. Introduction 73
3.2. Technical considerations 74
 3.2.1. Lines of approach 75
 3.2.2. Light and electron microscopy of PHA-L labelled structures 79
 3.2.3. Correlative light and electron microscopy 81
 3.2.4. Location of the PHA-L taken up by neurons 81
 3.2.5. Location of PHA-L in axon terminals 82
3.3. Concluding remarks 82
4. Combination of PHA-L tracing with other tracing techniques 84
 4.1. Light microscopy 84
 4.1.1. PHA-L and retrograde tracing 84
 4.1.2. PHA-L and intracellular injections 89
 4.1.3. PHA-L and anterograde tracing 89
 4.2. Electron microscopy 89
 4.2.1. PHA-L and retrograde tracing 89
 4.2.2. PHA-L as a postsynaptic marker in combination with anterograde degeneration 89
5. Combinations of PHA-L tracing with (immuno)histochemical procedures 91
 5.1. Introduction 91
 5.2. Double-labelling of fibers to show co-localization of PHA-L and a second marker 92
 5.3. PHA-L tracing combined with enzyme histochemistry 93
 5.4. PHA-L tracing in dual-label immunoperoxidase histochemistry 93
 5.4.1. Principle of the dual-label peroxidase immunohistochemistry 95
 5.4.2. Control experiments 95
 5.4.3. PHA-L tracing combined with dopamine (DA)- and GABA-immunohistochemistry 97
 5.4.4. PHA-L tracing combined with choline acetyltransferase (ChAT)-immunocytochemistry 99
 5.4.5. PHA-L tracing combined with peptide immunohistochemistry 103
 5.5. Advantages and limitations of dual-labelling at the light microscopic level 103
 5.6. Dual immunocytochemistry at the electron microscopic levels 105
 5.6.1. Combination of PHA-L-tracing and pre-embedding immunocytochemistry 105
 5.6.2. Combination of PHA-L-tracing and postembedding immunocytochemistry 107
6. Concluding remarks and further perspectives 110
 6.1. Summary of advantages and limitations 110
 6.1.1. Advantages 110
 6.1.2. Limitations 110
 6.2. Further perspectives 111
7. Acknowledgements 111
8. References 112
9. Protocols 119
 9.1. Light microscopy 119
 9.1.1. Protocol for standard light microscopic visualization of transported PHA-L 119
 9.1.2. Protocol for the simultaneous detection of transported PHA-L and an antigen present in target structures; PHA-L tracing and dopamine (DA)-immunocytochemistry 120
 9.1.3. Protocol for the simultaneous detection of transported PHA-L and an antigen present in targets structures: PHA-
Contents

L tracing combined with choline acetyltransferase (ChAT)-immunocytochemistry 121

9.2. Electron microscopy 122
 9.2.1. Protocol for electron microscopic tracing with PHA-L 122
 9.2.2. Dual PHA-L tracing-immunocytochemistry at the electron microscopic level 123

III. COMBINED MORPHOLOGICAL AND HISTOCHEMICAL TECHNIQUES FOR THE STUDY OF NEURONAL MICROCIRCUITS – J.P. BOLAM AND C.A. INGHAM

1. Introduction 125
 1.1. Aims and organization of the chapter 127

2. Basic tools 127
 2.1. The concept of correlated light and electron microscopy 127
 2.1.1. Reasons 128
 2.1.2. Procedure 128
 2.2. Methods of neuron labelling for electron microscopy 131
 2.2.1. Golgi-impregnation 132
 2.2.2. Retrograde labelling 139
 2.2.3. Labelling of neurons on the basis of chemical characteristics 142
 2.3. Methods of characterization of terminals 145
 2.3.1. Golgi-impregnation and electron microscopy 145
 2.3.2. Anterograde degeneration of synaptic terminals 146
 2.3.3. Anterograde labelling of synaptic terminals with HRP 146
 2.3.4. Terminals labelled by the anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L) 147
 2.3.5. Immunocytochemistry and electron microscopy 148

3. Combinations of basic procedures to address questions of neuronal microcircuitry 149
 3.1. What is the synaptic input and synaptic output of morphologically characterized neurons? 150
 3.1.1. Combination of Golgi-impregnation and retrograde transport of HRP (or conjugate) 150
 3.1.2. Other approaches to address the question 155
 3.2. What is the origin of the synaptic input and synaptic output of morphologically characterized neurons? 158
 3.2.1. Combination of anterograde degeneration, retrograde labelling and Golgi-impregnation 158
 3.2.2. Terminals labelled by anterograde transport of HRP (or conjugate) 160
 3.2.3. Terminals labelled by the anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L) 161
 3.3. What is the origin of the synaptic input of chemically characterized neurons? 166
 3.3.1. Combination of anterograde degeneration and immunocytochemistry for cell bodies and dendrites 166
 3.3.2. Combination of anterograde PHA-L and
3.4. What is the chemical nature of projection neurons?

3.4.1. Retrograde transport of HRP (or conjugate) combined with immunocytochemistry of the same neuron

3.5. What is the synaptic input and synaptic output of morphologically and chemically characterized neurons?

3.5.1. Combination of immunocytochemistry and Golgi-impregnation

3.5.2. Combination of immunocytochemistry, Golgi-impregnation and retrograde labelling with HRP (or conjugate)

3.6. What is the chemical nature of the synaptic input to morphologically characterized neurons?

3.6.1. Combination of immunocytochemistry for synaptic terminals, the retrograde transport of HRP (or conjugate) and Golgi-impregnation

3.7. What is the chemical nature of the synaptic input to chemically characterized neurons?

3.7.1. Double immunocytochemistry at the electron microscopic level

3.8. What is the nature of terminals converging on to one neuronal structure?

3.8.1. Double/triple immunocytochemistry at the electron microscopic level

3.8.2. Combination of anterograde degeneration of synaptic terminals with immunocytochemistry for a different class of terminals

3.8.3. Combination of anterograde degeneration, anterograde transport of HRP/WGA and Golgi-impregnation

3.9. What is the origin and chemical nature of synaptic terminals in contact with a particular class of neuron?

3.9.1. Combination of the anterograde transport of PHA-L or WGA/HRP with post-embedding GABA immunocytochemistry

4. Concluding remarks

5. Appendix 1

5.1. Dehydration and embedding in resin for electron microscopy

6. Appendix 2

6.1. Perfuse-fixation (rat)

7. References
2.2. Fixation
2.3. Sectioning and embedding
2.4. Electron dense markers
 2.4.1. Enzymatic labels
 2.4.2. Metallic markers
 2.4.3. Proteins and synthetic markers
 2.4.4. Autoradiography
 2.4.5. Fluorescent probes
3. Immunostaining for single antigens
 3.1. Pre-embedding peroxidase immunostaining
 3.1.1. Peroxidase-antiperoxidase (PAP) immunostaining
 3.1.2. Avidin-biotin-peroxidase complex (ABC)
 3.1.3. HRP-labelled secondary antibody
 3.1.4. Metallic intensification of peroxidase reaction product
 3.1.5. Gold substituted silver peroxidase (GSSP)
 3.1.6. Benzidine dihydrochloride (BDHC) immunostaining
 3.2. Pre-embedding colloidal gold immunostaining
 3.3. Pre-embedding silver intensified gold
 3.3.1. Silver intensification of colloidal gold
 3.3.2. SIG procedure
 3.3.3. Immunostaining of tyrosine hydroxylase with gold particles
 3.4. Postembedding colloidal gold immunostaining
 3.4.1. Method #1
 3.4.2. Method #2
 3.5. Immunostaining of ultrathin cryosections
4. Dual ultrastructural immunostaining
 4.1. Dual immunostaining with different size gold probes
 4.1.1. Dual immunogold labelling with antisera from different species
 4.1.2. Dual immunolabelling on opposite sides of a single grid
 4.1.3. Gold label antigen detection (GLAD)
 4.1.4. Dual immunostaining with protein A-colloidal gold
 4.1.5. Dual immunolabelling on serial ultrathin sections
 4.2. Dual immunostaining with pre-embedding peroxidase and post-embedding colloidal gold
 4.2.1. Functional implications related to GABA and hypothalamic magnocellular neurosecretory neurons
 4.3. Dual immunostaining with silver intensified gold and peroxidase
 4.3.1. Role of GABA in endocrine regulation
 4.4. Dual immunostaining with gold substituted silver peroxidase and DAB
 4.4.1. Penetration and reliability of GSSP
 4.4.2. Interactions between chemically defined neurons in the suprachiasmatic nucleus
 4.5. Double enzymatic immunostaining with benzidine dihydrochloride and diaminobenzidine
 4.6. Combined autoradiography and immunocytochemistry
 4.6.1. Light microscopy autoradiography
V. INTRACELLULAR INJECTION OF NEURONS IN FIXED BRAIN TISSUE
COMBINED WITH OTHER NEUROANATOMICAL TECHNIQUES AT THE
LIGHT AND ELECTRON MICROSCOPIC LEVEL – E.H. BUHL,
W.K. SCHWERDTFEGER AND P. GERMROTH

1. Introduction 273
2. Equipment 274
 2.1. Injection set-up and micromanipulator 274
 2.2. Pipette puller and iontophoretic pump 275
3. Methodological parameters 275
 3.1. Fixation 275
 3.1.1. Perfusion fixation 275
 3.1.2. Immersion fixation 276
 3.2. Preparation of slices 276
 3.3. Preparation of micropipettes 277
 3.4. Injection technique 279
 3.5. Staining mechanism: some considerations 280
 3.6. Embedding procedure 281
 3.7. Photooxidation: methodological procedure and possible
 mechanism 283
 3.8. Photooxidation: application for light microscopy 283
 3.9. Photooxidation: correlated light and electron microscopy 284
4. Methodological combinations at the light microscopic level 287
 4.1. Retrograde tracing 287
 4.2. Specific uptake of fluorescent markers 291
 4.3. Visualization and uptake of neurotransmitters and analogs 291
 4.4. Immunocytochemistry 295
 4.4.1. Preservation of antigenicity 295
 4.4.2. Processing of tissue and visualization of double-labelling 295
5. Methodological combinations at the electron microscopic level 297
 5.1. Tracing neuronal chains by combining retrograde tracing,
 intracellular staining and anterograde degeneration at the electron
 microscopic level 297
 5.2. Combination with immunocytochemistry 299
6. Concluding remarks 299
7. References 300
VI. IMMUNOCYTOCHEMICAL IDENTIFICATION OF ELECTROPHYSIOLOGICALLY CHARACTERIZED CELLS – K.G. SMITHSON AND G.I. HATTON

1. Introduction
 1.1. Studies of morphology and physiology 305
 1.2. Emerging neurochemical domain 306
 1.3. Objectives of integrated studies 306
 1.4. Studies of morphology, physiology and neurochemistry 307
 1.5. Chapter objectives 307

2. Combined electrophysiology and immunocytochemistry 308
 2.1. Experimental background 308
 2.2. Issues involved in the selection of methods 309
 2.3. Overview of approach 309
 2.4. Brain slice preparation 310
 2.5. Intracellular recording and dye injection 312
 2.6. Primary tissue fixation 312
 2.7. Observation of dye-filled cells in the whole slice 312
 2.8. Secondary tissue fixation 313
 2.9. Section preparation: polyethylene glycol embedding 313
 2.9.1. Tissue dehydration 315
 2.9.2. Tissue infiltration 315
 2.9.3. Tissue embedding 317
 2.9.4. Production of tissue sections 317
 2.9.5. Polyethylene glycol removal 319
 2.10. Identification of sections containing dye-filled cells 320
 2.11. Immunocytochemical identification of antigens of interest 321
 2.11.1. Immunocytochemistry 321
 2.11.2. Chromogen reaction 322
 2.12. Identification of double labelled cells 322
 2.13. Alternative immunocytochemical methods 323
 3. Immunocytochemically identified cells 323
 4. Identification of chief methodological concerns 324
 4.1. Physiological preparations 328
 4.2. Cell marking compounds 331
 4.3. Fixation 333
 4.4. Whole slice observation 334
 4.5. Section preparation 334
 4.6. Cell recovery 336
 4.7. Methods of chemical identification 336
 4.8. Identification of double labelled cells 337
 4.9. Control procedures 338
 4.10. Strategies for adapting these techniques 338
 5. Summary 339
 6. Acknowledgements 339
 7. Appendix 339
 7.1. Summary of methods 339
 7.1.1. Full method (for identification of one or more substances) 339
 7.1.2. Abbreviated method (for identification of a single antigen (positive-only) in thick sections) 340
VI. ANATOMICAL ANALYSIS OF ELECTROPHYSIOLOGICALLY CHARACTERIZED NEURONS IN THE RAT STRIO-PALLIDAL SYSTEM - H.T. CHANG AND C.J. WILSON

1. Introduction 351
2. Normal intracellular recording and labeling studies 352
 2.1. Background 352
 2.1.1. Cell types in the striatum 352
 2.1.2. Electron microscopic analysis of striatal neurons 353
 2.1.3. Anatomy and physiology of striatal afferents 354
 2.2. Materials and methods 355
2.3. Results 357
 2.3.1. Spontaneous firing patterns of neostriatal neurons 357
 2.3.2. The axonal arborizations of the spiny neurons 358
 2.3.3. Intracellularly labelled striatal efferent axons 363
 2.3.4. Afferent input to the spiny projection neurons 367
 2.3.5. Intracellular labelling of other types of striatal neurons 372
3. Combining intracellular labelling with other anatomical techniques: immunocytochemistry, anterograde and retrograde tracing 374
 3.1. Rationale 374
 3.2. Factors to be considered 375
 3.3. Intracellular labelling combined with immunocytochemistry 375
 3.3.1. Relationships of intracellularly labelled striatal cells with the striatal patch-matrix compartments 376
 3.3.2. Relationships of intracellularly labelled pallidal neurons with immunocytochemically labelled terminals 379
3.4. Compatibility of intracellular labelling with other anatomical methods 382
 3.4.1. Relationship with retrogradely labelled projection neurons 382
 3.4.2. Relationships with anterogradely labelled afferent fibers 384
 3.4.3. Intracellular labelling combined with AChE histochemistry 384
Contents

4. Technical considerations 386
 4.1. Tips and trouble-shooting on normal intracellular injection of tracers 386
 4.2. Tips on light and electron microscopic analyses 388
 4.3. Intracellular labelling combined with immunocytochemistry 389
 4.3.1. Pre-embedding immunogold procedures 389
 4.3.2. Post-embedding immunogold procedures 392
 4.4. Intracellular labelling combined with other anatomical techniques 393
 4.4.1. Intracellular labelling and retrograde labelling 393
 4.4.2. Intracellular labelling and anterograde labelling 394
5. Acknowledgements 395
6. References 395

VIII. CONVERGENCE OF MORPHOLOGICAL, PHYSIOLOGICAL AND IMMUNOCYTOCHEMICAL TECHNIQUES FOR THE STUDY OF SINGLE MAUTHNER CELLS – H. KORN, D.S. FABER AND A. TRILLER

1. Introduction 403
2. General properties of the M-cell 404
 2.1. Identification of the M-cell 404
 2.1.1. Morphological criteria 404
 2.1.2. Note on axonal studies 405
 2.2. Electrophysiological landmarks 407
2.3. Classification of afferent synapses 408
 2.3.1. General features 408
 2.3.2. Technical aspects of fish studies 408
 2.3.3. Distribution of endings 411
3. Microcircuitry of a command neuron: relations with a stereotyped behavior 412
 3.1. Excitatory inputs 412
 3.2. Inhibitory inputs 413
 3.2.1. Technical comments relative to HRP 413
 3.2.2. General description 413
 3.2.3. Quantitative analysis of branching patterns 415
 3.3. Organization of a sensory network 417
4. Field effects: unconventional neuro-neuronal interactions? 419
5. Chemical transmission: identification and functions of neurotransmitters 421
 5.1. Note on general immunocytochemical techniques 423
 5.2. Glycine: a complete example of convergence 427
 5.3. \(\gamma\)-Aminobutyric acid and dendritic inhibition 428
 5.4. Serotonin: chemical definition of an afferent pathway 428
 5.4.1. Histological methods 429
 5.4.2. Morphological features of 5-HT afferents 429
 5.4.3. Physiological consequences 431
 5.5. Colocalization of classical transmitters 433
 5.5.1. GABA and glycine 433
 5.5.2. Serotonin and glycine 434
 5.5.3. Evaluation of function 434
6. Chemical transmission: quantal mode of release
 6.1. Quantal analysis in the light of morphology
 6.1.1. Morphological significance of a mathematical term
 6.1.2. Validation of the method and the one vesicle hypothesis
 6.2. Ultrastructure of active zones and definition of a synaptic unit
 6.2.1. Techniques for studies of presynaptic specializations
 6.2.2. Active zones at inhibitory synapses
 6.2.3. Definition of a synaptic unit
 6.3. Significance of probabilistic release for hard-wired connectivity
 6.4. Dynamics of the presynaptic grid during release
 6.4.1. Technical aspects for studies of exocytosis
 6.4.2. Changes in morphology with release
7. Chemical transmission: interactions between related systems
 7.1. Homosynaptic synergism due to lateral diffusion of glycine
 7.2. Heterosynaptic interactions involving glycine
8. Cell biology and development
 8.1. Regulation of membrane properties
 8.1.1. Techniques for axotomy
 8.1.2. Axonal regeneration and survival following lesions
 8.1.3. Maintenance of the cell body in an altered state
 8.2. Structural aspects of the cytoplasm
 8.2.1. Method for dissection of the M-cell
 8.2.2. M-cell cytoskeleton
 8.3. Experimental embryology and development
 8.3.1. Early events of M-cell appearance and outgrowth
 8.3.2. Environmental controls
 8.4. Relation of the M-cell with other classes of medullary neurons
 8.4.1. Further homologies with reticulospinal cells
 8.4.2. An immunological marker
9. Conclusion
10. References

IX. IN SITU HYBRIDIZATION HISTOCHEMISTRY – W. SCOTT YOUNG III

1. Introduction
2. Technical aspects
 2.1. Tissue preparation
 2.2. Hybridization
 2.3. Probes
 2.4. Hybrid detection
 2.5. Quantitation of hybridization
 2.6. Specificity of hybridization
 2.7. In situ hybridization histochemistry used with other anatomical techniques
3. Applications
4. Acknowledgements
5. Appendix I – protocols
6. Appendix II – protocol for non-radioactive detection of digoxigenin-labeled oligonucleotide probes
Contents

7. Appendix III – protocol for non-radioactive detection of biotin-labelled oligonucleotide probe 503
8. Appendix IV – protocols for combining in situ hybridization histochemistry with immunohistochemistry or retrograde tract-tracing 503
9. Appendix V – glossary 506
10. References 506

SUBJECT INDEX 513