SAS® FOR LINEAR MODELS

Fourth Edition

Ramon C. Littell
Walter W. Stroup
Rudolf J. Freund
Contents

Acknowledgments xi

Chapter 1 Introduction

1.1 About This Book 1

1.2 Statistical Topics and SAS Procedures 1

Chapter 2 Regression

2.1 Introduction 3

2.2 The REG Procedure 4

2.2.1 Using the REG Procedure to Fit a Model with One Independent Variable 5

2.2.2 The P, CLM, and CLI Options: Predicted Values and Confidence Limits 10

2.2.3 A Model with Several Independent Variables 12

2.2.4 The SS1 and SS2 Options: Two Types of Sums of Squares 14

2.2.5 Tests of Subsets and Linear Combinations of Coefficients 17

2.2.6 Fitting Restricted Models: The RESTRICT Statement and NOINT Option 18

2.2.7 Exact Linear Dependency 21

2.3 The GLM Procedure 22

2.3.1 Using the GLM Procedure to Fit a Linear Regression Model 22

2.3.2 Using the CONTRAST Statement to Test Hypotheses about Regression Parameters 24

2.3.3 Using the ESTIMATE Statement to Estimate Linear Combinations of Parameters 26

2.4 Statistical Background 27

2.4.1 Terminology and Notation 27

2.4.2 Partitioning the Sums of Squares 28

2.4.3 Hypothesis Tests and Confidence Intervals 29

2.4.4 Using the Generalized Inverse 31

Chapter 3 Analysis of Variance for Balanced Data

3.1 Introduction 33

3.2 One- and Two-Sample Tests and Statistics 34

3.2.1 One-Sample Statistics 34

3.2.2 Two Related Samples 37

3.2.3 Two Independent Samples 39
3.3 The Comparison of Several Means: Analysis of Variance 42
 3.3.1 Terminology and Notation 42
 3.3.1.1 Crossed Classification and Interaction Sum of Squares 44
 3.3.1.2 Nested Effects and Nested Sum of Squares 45
 3.3.2 Using the ANOVA and GLM Procedures 46
 3.3.3 Multiple Comparisons and Preplanned Comparisons 48

3.4 The Analysis of One-Way Classification of Data 49
 3.4.1 Computing the ANOVA Table 52
 3.4.2 Computing Means, Multiple Comparisons of Means, and Confidence Intervals 55
 3.4.3 Planned Comparisons for One-Way Classification: The CONTRAST Statement 56
 3.4.4 Linear Combinations of Model Parameters 59
 3.4.5 Testing Several Contrasts Simultaneously 59
 3.4.6 Orthogonal Contrasts 60
 3.4.7 Estimating Linear Combinations of Parameters: The ESTIMATE Statement 60

3.5 Randomized-Blocks Designs 62
 3.5.1 Analysis of Variance for Randomized-Blocks Design 64
 3.5.2 Additional Multiple Comparison Methods 65
 3.5.3 Dunnett’s Test to Compare Each Treatment to a Control 70

3.6 A Latin Square Design with Two Response Variables 72

3.7 A Two-Way Factorial Experiment 74
 3.7.1 ANOVA for a Two-Way Factorial Experiment 75
 3.7.2 Multiple Comparisons for a Factorial Experiment 78
 3.7.3 Multiple Comparisons of METHOD Means by VARIETY 80
 3.7.4 Planned Comparisons in a Two-Way Factorial Experiment 82
 3.7.5 Simple Effect Comparisons 84
 3.7.6 Main Effect Comparisons 85
 3.7.7 Simultaneous Contrasts in Two-Way Classifications 86
 3.7.8 Comparing Levels of One Factor within Subgroups of Levels of Another Factor 87
 3.7.9 An Easier Way to Set Up CONTRAST and ESTIMATE Statements 89

Chapter 4 Analyzing Data with Random Effects

4.1 Introduction 91

4.2 Nested Classifications 93
 4.2.1 Analysis of Variance for Nested Classifications 96
 4.2.2 Computing Variances of Means from Nested Classifications and Deriving Optimum Sampling Plans 99
 4.2.3 Analysis of Variance for Nested Classifications: Using Expected Mean Squares to Obtain Valid Tests of Hypotheses 99
 4.2.4 Variance Component Estimation for Nested Classifications: Analysis Using PROC MIXED 101
 4.2.5 Additional Analysis of Nested Classifications Using PROC MIXED: Overall Mean and Best Linear Unbiased Prediction 104
4.3 **Blocked Designs with Random Blocks** 106

4.3.1 Random-Blocks Analysis Using PROC MIXED 107
4.3.2 Differences between GLM and MIXED Randomized-Complete-Blocks Analysis: Fixed versus Random Blocks 110
4.3.2.1 Treatment Means 111
4.3.2.2 Treatment Differences 112

4.4 **The Two-Way Mixed Model** 113

4.4.1 Analysis of Variance for the Two-Way Mixed Model: Working with Expected Mean Squares to Obtain Valid Tests 114
4.4.2 Standard Errors for the Two-Way Mixed Model: GLM versus MIXED 117
4.4.3 More on Expected Mean Squares: Determining Quadratic Forms and Null Hypotheses for Fixed Effects 120

4.5 **A Classification with Both Crossed and Nested Effects** 122

4.5.1 Analysis of Variance for Crossed-Nested Classification 124
4.5.2 Using Expected Mean Squares to Set Up Several Tests of Hypotheses for Crossed-Nested Classification 124
4.5.3 Satterthwaite’s Formula for Approximate Degrees of Freedom 129
4.5.4 PROC MIXED Analysis of Crossed-Nested Classification 131

4.6 **Split-Plot Experiments** 135

4.6.1 A Standard Split-Plot Experiment 136
4.6.1.1 Analysis of Variance Using PROC GLM 137
4.6.1.2 Analysis with PROC MIXED 139

Chapter 5 **Unbalanced Data Analysis: Basic Methods**

5.1 **Introduction** 141

5.2 **Applied Concepts of Analyzing Unbalanced Data** 142

5.2.1 ANOVA for Unbalanced Data 144
5.2.2 Using the CONTRAST and ESTIMATE Statements with Unbalanced Data 146
5.2.3 The LSMEANS Statement 147
5.2.4 More on Comparing Means: Other Hypotheses and Types of Sums of Squares 147

5.3 **Issues Associated with Empty Cells** 148

5.3.1 The Effect of Empty Cells on Types of Sums of Squares 149
5.3.2 The Effect of Empty Cells on CONTRAST, ESTIMATE, and LSMEANS Results 150

5.4 **Some Problems with Unbalanced Mixed-Model Data** 151

5.5 **Using the GLM Procedure to Analyze Unbalanced Mixed-Model Data** 152

5.5.1 Approximate F-Statistics from ANOVA Mean Squares with Unbalanced Mixed-Model Data 152
5.5.2 Using the CONTRAST, ESTIMATE, and LSMEANS Statements in GLM with Unbalanced Mixed-Model Data 155
5.6 Using the MIXED Procedure to Analyze Unbalanced Mixed-Model Data 156

5.7 Using the GLM and MIXED Procedures to Analyze Mixed-Model Data with Empty Cells 158

5.8 Summary and Conclusions about Using the GLM and MIXED Procedures to Analyze Unbalanced Mixed-Model Data 161

Chapter 6 Understanding Linear Models Concepts

6.1 Introduction 163

6.2 The Dummy-Variable Model 164

6.2.1 The Simplest Case: A One-Way Classification 164
6.2.2 Parameter Estimates for a One-Way Classification 167
6.2.3 Using PROC GLM for Analysis of Variance 170
6.2.4 Estimable Functions in a One-Way Classification 175

6.3 Two-Way Classification: Unbalanced Data 179

6.3.1 General Considerations 179
6.3.2 Sums of Squares Computed by PROC GLM 182
6.3.3 Interpreting Sums of Squares in Reduction Notation 183
6.3.4 Interpreting Sums of Squares in μ-Model Notation 185
6.3.5 An Example of Unbalanced Two-Way Classification 188
6.3.6 The MEANS, LSMEANS, CONTRAST, and ESTIMATE Statements in a Two-Way Layout 191
6.3.7 Estimable Functions for a Two-Way Classification 194

6.4 Mixed-Model Issues 214

6.4.1 Proper Error Terms 214
6.4.2 More on Expected Mean Squares 216
6.4.3 An Issue of Model Formulation Related to Expected Mean Squares 221

6.5 ANOVA Issues for Unbalanced Mixed Models 222

6.5.1 Using Expected Mean Squares to Construct Approximate F-Tests for Fixed Effects 222

6.6 GLS and Likelihood Methodology Mixed Model 225

6.6.1 An Overview of Generalized Least Squares Methodology 225
6.6.2 Some Practical Issues about Generalized Least Squares Methodology 227
Chapter 7 Analysis of Covariance

7.1 Introduction 229

7.2 A One-Way Structure 230
 7.2.1 Covariance Model 230
 7.2.2 Means and Least-Squares Means 234
 7.2.3 Contrasts 237
 7.2.4 Multiple Covariates 238

7.3 Unequal Slopes 239
 7.3.1 Testing the Heterogeneity of Slopes 240
 7.3.2 Estimating Different Slopes 241
 7.3.3 Testing Treatment Differences with Unequal Slopes 244

7.4 A Two-Way Structure without Interaction 247

7.5 A Two-Way Structure with Interaction 249

7.6 Orthogonal Polynomials and Covariance Methods 256
 7.6.1 A 2x3 Example 256
 7.6.2 Use of the IML ORPOL Function to Obtain Orthogonal Polynomial Contrast Coefficients 259
 7.6.3 Use of Analysis of Covariance to Compute ANOVA and Fit Regression 261

Chapter 8 Repeated-Measures Analysis

8.1 Introduction 265

8.2 The Univariate ANOVA Method for Analyzing Repeated Measures 269
 8.2.1 Using GLM to Perform Univariate ANOVA of Repeated-Measures Data 270
 8.2.2 The CONTRAST, ESTIMATE, and LSMEANS Statements in Univariate ANOVA of Repeated-Measures Data 272

8.3 Multivariate and Univariate Methods Based on Contrasts of the Repeated Measures 274
 8.3.1 Univariate ANOVA of Repeated Measures at Each Time 274
 8.3.2 Using the REPEATED Statement in PROC GLM to Perform Multivariate Analysis of Repeated-Measures Data 275
 8.3.3 Univariate ANOVA of Contrasts of Repeated Measures 279

8.4 Mixed-Model Analysis of Repeated Measures 280
 8.4.1 The Fixed-Effects Model and Related Considerations 281
 8.4.2 Selecting an Appropriate Covariance Model 284
 8.4.3 Reassessing the Covariance Structure with a Means Model Accounting for Baseline Measurement 291
 8.4.4 Information Criteria to Compare Covariance Models 292
 8.4.5 PROC MIXED Analysis of FEV1 Data 296
 8.4.6 Inference on the Treatment and Time Effects of FEV1 Data Using PROC MIXED 298
 8.4.6.1 Comparisons of DRUG*HOUR Means 299
 8.4.6.2 Comparisons Using Regression 301
Chapter 9 Multivariate Linear Models

9.1 Introduction 305
9.2 A One-Way Multivariate Analysis of Variance 306
9.3 Hotelling’s T^2 Test 309
9.4 A Two-Factor Factorial 312
9.5 Multivariate Analysis of Covariance 317
9.6 Contrasts in Multivariate Analyses 320
9.7 Statistical Background 321

Chapter 10 Generalized Linear Models

10.1 Introduction 325

10.2 The Logistic and Probit Regression Models 328
 10.2.1 Logistic Regression: The Challenger Shuttle O-Ring Data Example 328
 10.2.2 Using the Inverse Link to Get the Predicted Probability 331
 10.2.3 Alternative Logistic Regression Analysis Using 0-1 Data 334
 10.2.4 An Alternative Link: Probit Regression 336

10.3 Binomial Models for Analysis of Variance and Analysis of Covariance 339
 10.3.1 Logistic ANOVA 339
 10.3.2 The Analysis-of-Variance Model with a Probit Link 344
 10.3.3 Logistic Analysis of Covariance 347

10.4 Count Data and Overdispersion 353
 10.4.1 An Insect Count Example 353
 10.4.2 Model Checking 357
 10.4.3 Correction for Overdispersion 362
 10.4.4 Fitting a Negative Binomial Model 366
 10.4.5 Using PROC GENMOD to Fit the Negative Binomial with a Log Link 367
 10.4.6 Fitting the Negative Binomial with a Canonical Link 369
 10.4.7 Advanced Application: A User-Supplied Program to Fit the Negative Binomial with a Canonical Link 372

10.5 Generalized Linear Models with Repeated Measures—Generalized Estimating Equations 377
 10.5.1 A Poisson Repeated-Measures Example 377
 10.5.2 Using PROC GENMOD to Compute a GEE Analysis of Repeated Measures 379
Chapter 11 Examples of Special Applications

11.1 Introduction 389

11.2 Confounding in a Factorial Experiment 389
 11.2.1 Confounding with Blocks 390
 11.2.2 A Fractional Factorial Example 394

11.3 A Balanced Incomplete-Blocks Design 398

11.4 A Crossover Design with Residual Effects 402

11.5 Models for Experiments with Qualitative and Quantitative Variables 409

11.6 A Lack-of-Fit Analysis 413

11.7 An Unbalanced Nested Structure 416

11.8 An Analysis of Multi-Location Data 420
 11.8.1 An Analysis Assuming No Location×Treatment Interaction 421
 11.8.2 A Fixed-Location Analysis with an Interaction 423
 11.8.3 A Random-Location Analysis 425
 11.8.4 Further Analysis of a Location×Treatment Interaction Using a Location Index 428

11.9 Absorbing Nesting Effects 431

References 441

Index 447