THE HUMAN BRAIN
An Introduction to Its Functional Anatomy

Sixth Edition

JOHN NOLTE, PhD
Professor of Cell Biology and Anatomy
The University of Arizona College of Medicine
Tucson, Arizona

THREE-DIMENSIONAL BRAIN RECONSTRUCTIONS
by JOHN SUNDSTEN, PhD
University of Washington
School of Medicine
Seattle, Washington
Contents

1 Introduction to the Nervous System

The nervous system has central and peripheral parts, 1
The principal cellular elements of the nervous system are neurons and glial cells, 2

2 Development of the Nervous System

The neural tube and neural crest give rise to the central and peripheral nervous systems, 37
Adverse events during development can cause congenital malformations of the nervous system, 49

3 Gross Anatomy and General Organization of the Central Nervous System

The long axis of the CNS bends at the cephalic flexure, 54
Hemisectioning a brain reveals parts of the diencephalon, brainstem, and ventricular system, 54
Humans, relative to other animals, have large brains, 55
Naming sulci and gyri cover the cerebral surface, 55
The diencephalon includes the thalamus and hypothalamus, 64
Most cranial nerves are attached to the brainstem, 65
The cerebellum includes a vermis and two hemispheres, 67
Sections of the cerebrum reveal the basal ganglia and limbic structures, 67
Parts of the nervous system are interconnected in systematic ways, 68

4 Meningeal Coverings of the Brain and Spinal Cord

There are three meningeal layers: the dura mater, arachnoid, and pia mater, 80
The dura mater provides mechanical strength, 82
The dura mater has an arachnoid lining, 86
Pia mater covers the surface of the CNS, 90
The vertebral canal contains spinal epidural space, 91
Bleeding can open up potential meningeal spaces, 92
Parts of the CNS can herniate from one intracranial compartment into another, 93

5 Ventricles and Cerebrospinal Fluid

The brain contains four ventricles, 99
Choroid plexus is the source of most CSF, 103
Imaging techniques allow both the CNS and CSF to be visualized, 110
Disruption of CSF circulation can cause hydrocephalus, 117

6 Blood Supply of the Brain

The internal carotid arteries and vertebral arteries supply the brain, 122
Imaging techniques allow arteries and veins to be visualized, 132
Blood flow to the CNS is closely controlled, 132
A system of barriers partially separates the nervous system from the rest of the body, 140
Superficial and deep veins drain the brain, 141
Contents

7 Electrical Signaling by Neurons
- A lipid/protein membrane separates intracellular and extracellular fluids, 150
- Inputs to neurons cause slow, local potential changes, 156
- Action potentials convey information over long distances, 159
- Appendix 7A: Resistors, Capacitors, and Neuronal Membranes, 173
- Appendix 7B: Calculating the Membrane Potential, 176

8 Synaptic Transmission between Neurons
- There are five steps in conventional chemical synaptic transmission, 178
- Synaptic transmission can be rapid and point-to-point, or slow and often diffuse, 181
- Synaptic strength can be facilitated or depressed, 188
- Most neurotransmitters are small amine molecules, amino acids, or neuropeptides, 190
- Gap junctions mediate direct current flow from one neuron to another, 196

9 Sensory Receptors and the Peripheral Nervous System
- Receptors encode the nature, location, intensity, and duration of stimuli, 202
- Somatosensory receptors detect mechanical, chemical, or thermal changes, 206
- Peripheral nerves convey information to and from the CNS, 221

10 Spinal Cord
- The spinal cord is segmented, 228
- All levels of the spinal cord have a similar cross-sectional structure, 232
- The spinal cord is involved in sensory processing, motor outflow, and reflexes, 233
- Spinal gray matter is regionally specialized, 234
- Reflex circuitry is built into the spinal cord, 238
- Ascending and descending pathways have defined locations in the spinal white matter, 242
- The autonomic nervous system monitors and controls visceral activity, 252
- A longitudinal network of arteries supplies the spinal cord, 258
- Spinal cord damage causes predictable deficits, 259

11 Organization of the Brainstem
- The brainstem has conduit, cranial nerve, and integrative functions, 267
- The medulla, pons, and midbrain have characteristic gross anatomical features, 268
- The internal structure of the brainstem reflects surface features and the position of long tracts, 271
- The reticular core of the brainstem is involved in multiple functions, 280
- Some brainstem nuclei have distinctive neurochemical signatures, 283
- The brainstem is supplied by the vertebral-basilar system, 289

12 Cranial Nerves and Their Nuclei
- Cranial nerve nuclei have a generally predictable arrangement, 295
- Cranial nerves III, IV, VI, and XII contain somatic motor fibers, 299
- Branchiomeric nerves contain axons from multiple categories, 305
- Brainstem damage commonly causes deficits on one side of the head and the opposite side of the body, 319

13 The Chemical Senses of Taste and Smell
- The perception of flavor involves gustatory, olfactory, trigeminal, and other inputs, 324
- Taste is mediated by receptors in taste buds innervated by cranial nerves VII, IX, and X, 324
- Olfaction is mediated by receptors that project directly to the telencephalon, 330
14 Hearing and Balance: The Eighth Cranial Nerve
Auditory and vestibular receptor cells are located in the walls of the membranous labyrinth, 343
The cochlear division of the eighth nerve conveys information about sound, 349
The vestibular division of the eighth nerve conveys information about linear and angular acceleration of the head, 363

15 Atlas of the Human Brainstem

16 The Thalamus and Internal Capsule: Getting to and from the Cerebral Cortex
The diencephalon includes the epithalamus, subthalamus, hypothalamus, and thalamus, 391
The thalamus is the gateway to the cerebral cortex, 394
Interconnections between the cerebral cortex and subcortical structures travel through the internal capsule, 407

17 The Visual System
The eye has three concentric tissue layers and a lens, 416
The retina contains five major neuronal cell types, 420
Retinal neurons translate patterns of light into patterns of contrast, 425
Half of the visual field of each eye is mapped systematically in the contralateral cerebral hemisphere, 437
Primary visual cortex sorts visual information and distributes it to other cortical areas, 448
Early experience has permanent effects on the visual system, 452
Reflex circuits adjust the size of the pupil and the focal length of the lens, 452

18 Overview of Motor Systems
Each lower motor neuron innervates a group of muscle fibers, forming a motor unit, 457
Motor control systems involve both hierarchical and parallel connections, 461
The corticospinal tract has multiple origins and terminations, 464

19 Basal Ganglia
The basal ganglia include five major nuclei, 475
Basal ganglia circuitry involves multiple parallel loops that modulate cortical output, 479
Interconnections of the basal ganglia determine the pattern of their outputs, 480
Penetrating branches from the circle of Willis supply the basal ganglia, 486
Many basal ganglia disorders result in abnormalities of movement, 487

20 Cerebellum
The cerebellum can be divided into both transverse and longitudinal zones, 495
All parts of the cerebellum share common organizational principles, 499
Cerebellar cortex receives multiple inputs, 507
Each longitudinal zone has a distinctive output, 513
Patterns of connections indicate the functions of longitudinal zones, 514
Clinical syndromes correspond to functional zones, 520

21 Control of Eye Movements
Six extraocular muscles move the eye in the orbit, 526
There are fast and slow conjugate eye movements, 529
Changes in object distance require vergence movements, 534
The basal ganglia and cerebellum participate in eye movement control, 536
Most cerebral cortex is neocortex. Neocortical areas are specialized for different functions. The corpus callosum unites the two cerebral hemispheres. Consciousness and sleep are active processes.

The hypothalamus coordinates drive-related behaviors. Limbic structures are interposed between the hypothalamus and neocortex.

Both neurons and connections are produced in excess during development. Synaptic connections are adjusted throughout life. PNS repair is more effective than CNS repair.