Contents

1 Introduction .. 1
 1.1 Overview ... 1
 1.1.1 A brief introduction to directional statistics 1
 1.1.2 A brief outline of the theoretical advances presented in this book .. 2
 1.2 Directional datasets 4
 1.2.1 Paleomagnetism 4
 1.2.2 Political sciences 6
 1.2.3 Text mining 6
 1.2.4 Wildfire orientation 7
 1.2.5 Life sciences and bioinformatics 8
 1.3 Basics and notations 10
 1.4 Plan of the book 12

2 Advances in flexible parametric distribution theory ... 17
 2.1 Introduction ... 17
 2.1.1 Flexible parametric modeling: an active research area on \mathbb{R}^P 17
 2.1.2 Organization of the remainder of the chapter 18
 2.2 Flexible circular distributions 18
 2.2.1 Four ways to construct circular densities 18
 2.2.2 The classics: von Mises, cardioid and wrapped Cauchy distributions .. 19
 2.2.3 Beyond the classics: modern flexible circular modeling ... 22
 2.2.4 Flexible modeling of symmetric data: the Jones-Pewsey distribution 22
 2.2.5 Sine-skewing: a simple tool to skew any symmetric distribution ... 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.6</td>
<td>Skewness combined with unimodality: the scale-transforming approach</td>
<td>27</td>
</tr>
<tr>
<td>2.2.7</td>
<td>A general device for building symmetric bipolar distributions</td>
<td>28</td>
</tr>
<tr>
<td>2.2.8</td>
<td>A brief description of three other flexible models</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Flexible spherical distributions</td>
<td>35</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Classical spherical distributions</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Rotationally symmetric distributions</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3</td>
<td>A general method to skew rotationally symmetric distributions</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Flexible toroidal and cylindrical distributions</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Some history, motivations and goals</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2</td>
<td>The bivariate von Mises distribution and its variants</td>
<td>43</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Mardia–Sutton type cylindrical distributions</td>
<td>46</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Johnson–Wehrly type cylindrical distributions</td>
<td>47</td>
</tr>
<tr>
<td>2.4.5</td>
<td>The copula approach</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Further reading</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Advances in kernel density estimation on directional supports</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Kernel density estimation on the real line</td>
<td>55</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Organization of the remainder of the chapter</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Definitions and main properties</td>
<td>57</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Spherical kernel density estimation</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Cylindrical kernel density estimation</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>A delicate yet crucial issue: bandwidth choice</td>
<td>61</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Spherical AMISE and bandwidth selection</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Rule of thumb based on the FvML distribution</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3</td>
<td>A gain in generality: AMISE via mixtures of FvML densities</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Three further proposals</td>
<td>65</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Bandwidth selection in the cylindrical setting</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Inferential procedures</td>
<td>66</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Non-parametric goodness-of-fit test for directional data</td>
<td>66</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Non-parametric independence test for cylindrical data</td>
<td>68</td>
</tr>
<tr>
<td>3.4.3</td>
<td>An overview of non-parametric regression</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Further reading</td>
<td>70</td>
</tr>
</tbody>
</table>
4 Computational and graphical methods

4.1 Ordering data on the sphere: quantiles and depth functions 73
 4.1.1 Ordering on \mathbb{R} and \mathbb{R}^p, and organization of the remainder of the section 73
 4.1.2 Classical depth functions on the sphere 74
 4.1.3 Projected quantiles and related asymptotic results 75
 4.1.4 The angular Mahalanobis depth 78
 4.1.5 Statistical procedures based on projected quantiles and the angular Mahalanobis depth 78

4.2 Statistical inference under order restrictions on the circle 81
 4.2.1 Isotonic regression estimation and organization of the remainder of the section 81
 4.2.2 Order restrictions on the circle 82
 4.2.3 Circular isotonic regression 83

4.3 Exploring data features with the CircSiZer 84
 4.3.1 The SiZer, scale space theory and organization of the remainder of the section 84
 4.3.2 The CircSiZer ... 86
 4.3.3 Kernel choice based on causality: the special role of the wrapped normal ... 88

4.4 Computationally fast estimation for high-dimensional FvML distributions ... 89
 4.4.1 Maximum likelihood expressions for the parameters of FvML distributions and organization of the section 89
 4.4.2 Approximations for the concentration parameter from Mardia & Jupp (2000) and their limitations in high dimensions ... 89
 4.4.3 New (high-dimensional) approximations for the concentration parameter ... 90

4.5 Further reading .. 94

5 Local asymptotic normality for directional data 97

5.1 Introduction .. 97
 5.1.1 The LAN property on \mathbb{R}^p and its deep impact on asymptotic statistics 97
 5.1.2 Organization of the remainder of the chapter 98
5.2 Local asymptotic normality and optimal testing 98
 5.2.1 Contiguity .. 98
 5.2.2 Local asymptotic normality ... 99
 5.2.3 Optimal testing in LAN experiments 102
 5.2.4 LAN, semiparametric efficiency and invariance 105
5.3 LAN for directional data .. 109
 5.3.1 The Le Cam methodology for curved experiments and asso­
 ciated efficient tests .. 110
 5.3.2 LAN property for rotationally symmetric distributions 111
 5.3.3 Application 1: Optimal inference based on signed-ranks 113
 5.3.4 Application 2: ANOVA on spheres 115
 5.3.5 Application 3: Asymptotic power of tests of concentration 118
5.4 Further reading .. 120

6 Recent results for tests of uniformity and symmetry 121
 6.1 Introduction .. 121
 6.1.1 Organization of the remainder of the chapter 122
 6.2 Recent advances concerning the Rayleigh test of uniformity 123
 6.3 Sobolev tests of uniformity .. 124
 6.4 Uniformity tests based on random projections 126
 6.5 Testing for uniformity with noisy data 127
 6.6 Tests of reflective symmetry on the circle 128
 6.7 Tests of rotational symmetry on hyperspheres 129
 6.8 Testing for spherical location in the vicinity of the uniform distri­
 bution .. 131
 6.9 Further reading .. 133

7 High-dimensional directional statistics .. 135
 7.1 Introduction .. 135
 7.1.1 High-dimensional techniques in \(\mathbb{R}^p \) 135
 7.1.2 Organization of the remainder of the chapter 136
 7.2 Distributions on high-dimensional spheres 137
 7.3 Testing uniformity in the high-dimensional case 138
 7.4 Location tests in the high-dimensional case 142
 7.5 Concentration tests in the high-dimensional case 143
 7.6 Principal nested spheres ... 146