Classical and Modern Approaches in the Theory of Mechanisms

Nicolae Pandrea, Dinel Popa and Nicolae-Doru Stănescu
University of Pitești, Argeș, Romania
Contents

Preface xi
About the Companion Website xiii

1 **The Structure of Mechanisms** 1
1.1 Kinematic Elements 1
1.2 Kinematic Pairs 1
1.3 Kinematic Chains 2
1.4 Mobility of Mechanisms 3
1.4.1 Definitions 3
1.4.2 Mobility Degree of Mechanisms without Common Constraints 5
1.4.3 Mobility Degree of Mechanisms with Common Constraints 5
1.4.4 Mobility of a Mechanism Written with the Aid of the Number of Loops 7
1.4.5 Families of Mechanisms 7
1.4.6 Actuation of Mechanisms 9
1.4.7 Passive Elements 9
1.4.8 Passive Kinematic Pairs 10
1.4.9 Redundant Degree of Mobility 10
1.4.10 Multiple Kinematic Pairs 11
1.5 Fundamental Kinematic Chains 11
1.6 Multi-pairs (Poly-pairs) 14
1.7 Modular Groups 15
1.8 Formation and Decomposition of Planar Mechanisms 16
1.9 Multi-poles and Multi-polar Schemata 18
1.10 Classification of Mechanisms 18

2 **Kinematic Analysis of Planar Mechanisms with Bars** 21
2.1 General Aspects 21
2.2 Kinematic Relations 21
2.2.1 Plane-parallel Motion 21
2.2.2 Relative Motion 23
2.3 Methods for Kinematic Analysis 24
2.3.1 The Grapho-analytical Method 24
2.3.2 The Method of Projections 24
2.3.3 The Newton–Raphson Method 25
2.3.4 Determination of Velocities and Accelerations using the Finite Differences Method 26
2.4 Kinematic Analysis of the RRR Dyad 27
2.4.1 The Grapho-analytical Method 27
3.5.4 Determination of the Reactions for the RTR Dyad 139
3.5.5 Determination of the Reactions for the TRT Dyad 145
3.5.6 Determination of the Reactions for the RTT Dyad 150
3.5.7 Determination of the Reactions at the Driving Element 155
3.5.8 Determination of the Equilibration Force (Moment) using the Virtual Velocity Principle 156

3.6 Reactions in Kinematic Pairs with Friction 157
3.6.1 Friction Forces and Moments 157
3.6.2 Determination of the Reactions with Friction 160

3.7 Kinetostatic Analysis of some Planar Mechanisms 161
3.7.1 Kinetostatic Analysis of Four-bar Mechanism 161
3.7.2 Kinetostatic Analysis of Crank-shaft Mechanism 164
3.7.3 Kinetostatic Analysis of Crank and Slotted Lever Mechanism 166

4 Dynamics of Machines 169
4.1 Dynamic Model: Reduction of Forces and Masses 169
4.1.1 Dynamic Model 169
4.1.2 Reduction of Forces 169
4.1.3 Reduction of Masses 171
4.2 Phases of Motion of a Machine 173
4.3 Efficiency of Machines 174
4.4 Mechanical Characteristics of Machines 175
4.5 Equation of Motion of a Machine 176
4.6 Integration of the Equation of Motion 177
4.6.1 General Case 177
4.6.2 The Regime Phase 178
4.7 Flywheels 181
4.7.1 Formulation of the Problem: Definitions 181
4.7.2 Approximate Calculation 182
4.7.3 Exact Calculation 183
4.8 Adjustment of Motion Regulators 186
4.9 Dynamics of Multi-mobile Machines 189

5 Synthesis of Planar Mechanisms with Bars 195
5.1 Synthesis of Path-generating Four-bar Mechanism 195
5.1.1 Conditions for Existence of the Crank 195
5.1.2 Equation of the Coupler Curve 196
5.1.3 Triple Generation of the Coupler Curve 198
5.1.4 Analytic Synthesis 199
5.1.5 Mechanisms for which Coupler Curves Approximate Circular Arcs and Segments of Straight Lines 201
5.1.6 Method of Reduced Positions 201
5.2 Positional Synthesis 204
5.2.1 Formulation of the Problem 204
5.2.2 Poles of Finite Rotation 205
5.2.3 Bipositional Synthesis 206
5.2.4 Three-positional Synthesis 207
5.2.5 Four-positional Synthesis 210
5.2.6 Five-positional Synthesis 214
5.3 Function-generating Mechanisms 215
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cam Mechanisms</td>
</tr>
<tr>
<td>219</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Generalities. Classification</td>
</tr>
<tr>
<td>223</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Analysis of Displacement of Follower</td>
</tr>
<tr>
<td>223</td>
<td>6.2.1</td>
</tr>
<tr>
<td></td>
<td>Formulation of the Problem</td>
</tr>
<tr>
<td>224</td>
<td>6.2.2</td>
</tr>
<tr>
<td></td>
<td>The Analytical Method</td>
</tr>
<tr>
<td>233</td>
<td>6.2.3</td>
</tr>
<tr>
<td></td>
<td>The Graphical Method</td>
</tr>
<tr>
<td>236</td>
<td>6.2.4</td>
</tr>
<tr>
<td></td>
<td>Analysis of Displacement of Follower using AutoLisp</td>
</tr>
<tr>
<td>237</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Analysis of Velocities and Accelerations</td>
</tr>
<tr>
<td>237</td>
<td>6.3.1</td>
</tr>
<tr>
<td></td>
<td>Analytical Method</td>
</tr>
<tr>
<td>241</td>
<td>6.3.2</td>
</tr>
<tr>
<td></td>
<td>Graphical Method: Graphical Derivation</td>
</tr>
<tr>
<td>243</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Dynamical Analysis</td>
</tr>
<tr>
<td>243</td>
<td>6.4.1</td>
</tr>
<tr>
<td></td>
<td>Pre-load in the Spring</td>
</tr>
<tr>
<td>245</td>
<td>6.4.2</td>
</tr>
<tr>
<td></td>
<td>The Work of Friction</td>
</tr>
<tr>
<td>245</td>
<td>6.4.3</td>
</tr>
<tr>
<td></td>
<td>Pressure Angle, Transmission Angle</td>
</tr>
<tr>
<td>247</td>
<td>6.4.4</td>
</tr>
<tr>
<td></td>
<td>Determination of the Base Circle's Radius</td>
</tr>
<tr>
<td>248</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Fundamental Laws of the Follower's Motion</td>
</tr>
<tr>
<td>248</td>
<td>6.5.1</td>
</tr>
<tr>
<td></td>
<td>General Aspects: Phases of Motion of the Follower</td>
</tr>
<tr>
<td>249</td>
<td>6.5.2</td>
</tr>
<tr>
<td></td>
<td>The Linear Law</td>
</tr>
<tr>
<td>250</td>
<td>6.5.3</td>
</tr>
<tr>
<td></td>
<td>The Parabolic Law</td>
</tr>
<tr>
<td>252</td>
<td>6.5.4</td>
</tr>
<tr>
<td></td>
<td>The Harmonic Law</td>
</tr>
<tr>
<td>254</td>
<td>6.5.5</td>
</tr>
<tr>
<td></td>
<td>The Polynomial Law: Polydyne Cams</td>
</tr>
<tr>
<td>256</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Cam Mechanisms</td>
</tr>
<tr>
<td>256</td>
<td>6.6.1</td>
</tr>
<tr>
<td></td>
<td>Formulation of the Problem</td>
</tr>
<tr>
<td>257</td>
<td>6.6.2</td>
</tr>
<tr>
<td></td>
<td>The Equation of Synthesis</td>
</tr>
<tr>
<td>258</td>
<td>6.6.3</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Mechanism with Rotational Cam and Translational Follower</td>
</tr>
<tr>
<td>260</td>
<td>6.6.4</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Mechanism with Rotational Cam and Rotational Follower</td>
</tr>
<tr>
<td>262</td>
<td>6.6.5</td>
</tr>
<tr>
<td></td>
<td>Cam Synthesis using AutoLisp Functions</td>
</tr>
<tr>
<td>263</td>
<td>6.6.6</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
</tr>
<tr>
<td>273</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Gear Mechanisms</td>
</tr>
<tr>
<td>273</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>General Aspects: Classifications</td>
</tr>
<tr>
<td>273</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Relative Motion of Gears: Rolling Surfaces</td>
</tr>
<tr>
<td>278</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Reciprocal Wrapped Surfaces</td>
</tr>
<tr>
<td>280</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Fundamental Law of Toothing</td>
</tr>
<tr>
<td>281</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Parallel Gears with Spur Teeth</td>
</tr>
<tr>
<td>281</td>
<td>7.5.1</td>
</tr>
<tr>
<td></td>
<td>Generalities. Notations</td>
</tr>
<tr>
<td>281</td>
<td>7.5.2</td>
</tr>
<tr>
<td></td>
<td>Determination of the Conjugate Profile and Toothing Curve</td>
</tr>
<tr>
<td>283</td>
<td>7.5.3</td>
</tr>
<tr>
<td></td>
<td>The Involute of a Circle</td>
</tr>
<tr>
<td>283</td>
<td>7.5.4</td>
</tr>
<tr>
<td></td>
<td>Involute Conjugate Profile and Toothing Line</td>
</tr>
<tr>
<td>284</td>
<td>7.5.5</td>
</tr>
<tr>
<td></td>
<td>The Main Dimensions of Involute Gears</td>
</tr>
<tr>
<td>286</td>
<td>7.5.6</td>
</tr>
<tr>
<td></td>
<td>Thickness of a Tooth on a Circle of Arbitrary Radius</td>
</tr>
<tr>
<td>287</td>
<td>7.5.7</td>
</tr>
<tr>
<td></td>
<td>Building-up of Gear Trains</td>
</tr>
<tr>
<td>288</td>
<td>7.5.8</td>
</tr>
<tr>
<td></td>
<td>The Contact Ratio</td>
</tr>
<tr>
<td>289</td>
<td>7.5.9</td>
</tr>
<tr>
<td></td>
<td>Interference of Generation</td>
</tr>
<tr>
<td>290</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>Parallel Gears with Inclined Teeth</td>
</tr>
<tr>
<td>290</td>
<td>7.6.1</td>
</tr>
<tr>
<td></td>
<td>Generation of the Flanks</td>
</tr>
<tr>
<td>291</td>
<td>7.6.2</td>
</tr>
<tr>
<td></td>
<td>The Equivalent Planar Gear</td>
</tr>
<tr>
<td>293</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Conical Concurrent Gears with Spur Teeth</td>
</tr>
<tr>
<td>295</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Crossing Gears</td>
</tr>
<tr>
<td>295</td>
<td>7.8.1</td>
</tr>
<tr>
<td></td>
<td>Helical Gears</td>
</tr>
</tbody>
</table>