Aluminum-based PVD rear-side metallization for front-junction nPERT silicon solar cells

Kamal Katkhouda

Universitätsverlag Ilmenau
2015
Table of Contents

1. **Introduction** .. 11
 1.1 Thesis motivation and objectives .. 11
 1.2 Thesis outline .. 13

2. **Fundamentals** ... 17
 2.1 Basics of silicon solar cells ... 17
 2.1.1 Device structure and working principle of front-junction nPERT silicon solar cells ... 17
 2.1.2 Current-voltage characteristic of silicon solar cells 19
 2.1.3 Carrier recombination in crystalline silicon ... 21
 2.1.4 Impact of electrical and optical losses on current-voltage characteristic 24
 2.2 Rear-side metallization of silicon solar cells ... 27
 2.2.1 Review and state of the art ... 27
 2.2.2 Novel cell design featuring screen-printed front side and physical vapor deposited rear-side metallization .. 29
 2.2.3 Physical vapor deposition of metal layers .. 31
 2.3 Rear-side metallization related losses ... 34
 2.3.1 Ohmic losses due to lateral resistance of rear-side metallization 34
 2.3.2 Ohmic losses due to contact resistance of rear-side metallization 40
2.3.3 Optical losses due to parasitic absorption in rear-side metallization ... 42

2.3.4 Rear-side metallization related recombination losses 45

2.4 Requirements of rear-side metallization for double-side contacted industrial silicon solar cells .. 46

2.5 Why aluminum-based PVD rear-side metallization for n-type PERT solar cells? .. 47

3 Sputtering deposition processes of the investigated metal layers 51

3.1 Oerlikon SOLARIS 6 multi-layer sputtering deposition system 51

3.2 Sputtering-deposition processes of the metal layers 53

3.2.1 Process parameters and deposition rate of aluminum sputtering deposition .. 54

3.2.2 Sputtering-deposition processes of the Al-Si (1 at% Si) layers .. 55

3.2.3 Sputtering deposition processes of the silver layers 57

3.2.4 Sputtering deposition processes of the titanium layers 58

3.2.5 Maximum substrate temperature during aluminum sputtering deposition .. 59

3.3 Summary and conclusion .. 62

4 Contact formation process of aluminum-based metallization 63

4.1 Theoretical background on the contact-formation process of Al/Si-contacts ... 63

4.2 Characterization of contact formation process 69

4.3 Ti/Al stack against aluminum spiking ... 70

4.3.1 Theoretical background of titanium as a spiking barrier 70

4.3.2 SEM structural investigations of Ti/Al-stack 73
4.4 Novel Al-Si/Al-stack against Al-spiking ..75
 4.4.1 Process simulation of Al/Al-Si/Si system ..76
 4.4.2 SEM structural investigations of Al-Si/Al stack ..79
4.5 Summary and conclusion ...81
5 Specific contact resistance evaluation ..83
 5.1 Determination of specific contact resistance of point contacts on
 highly doped silicon ...84
 5.1.1 Sample structure and experimental setup ...84
 5.1.2 Analytical model to extract the contact resistance of the point
 contact from the measured data ...88
 5.1.3 Circular transmission line model to determine rear specific
 contact resistance ρ_{rear} ..92
 5.1.4 Verification of the analytical approximation with 3D numerical
 device simulations ...95
 5.1.5 Error contributions of wafer thickness and resistivity, BSF sheet
 resistance and contact radius ...97
 5.2 Specific contact resistance experimental results ..99
 5.2.1 Specific contact-resistance results on lowly doped n^+-BSF99
 5.2.2 Specific contact-resistance results on highly doped n^+-BSF101
 5.2.3 Comparison of the experimentally obtained ρ_{rear} data with
 previously published ones ...103
 5.2.4 Summary and conclusion ...103
6 Detailed optical study on rear-side reflectors for nPERT solar cells107
 6.1 Theoretical background ...107
 6.1.1 Optical properties of dielectric materials and metals107
6.1.2 Light paths for PERT solar cell with regular upright pyramids and frustrated total reflection ... 114
6.1.3 Reflectance of silicon/passivation/metallization-system calculated with the matrix method ... 119
6.2 Numerical 3D-device-simulations and experiments on reflection samples .. 127
6.2.1 One-layer Al-metallization with various passivation configurations .. 129
6.2.2 Multi-layer Al-based metallization with first Al-Si layer as a spiking barrier ... 132
6.2.3 Multi-layer Al-based metallization with first Ti layer as a low resistance contacting metal ... 133
6.2.4 One-layer Ag-metallization on various passivation layers 140
6.2.5 Multi-layer Al-based metallization with first thin Ag layer as an IR reflector ... 142
6.2.6 Comparison of the optimized rear-side reflectors 146
6.3 Summary and conclusion ... 147
7 Plasma-induced damage of sputtering deposition of metal layers 149
7.1 Experimental approach ... 150
7.1.1 Microwave photoconductance decay (MWPCD) 151
7.1.2 Corona Oxide Characterization of Semiconductor (COCOS) 153
7.2 Experimental results ... 155
7.2.1 Impact of aluminum sputtering on the electrical properties of Si/SiO₂ interface ... 155
7.2.2 Impact of Al sputtering on the electrical properties of Si/Al₂O₃ interface ... 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.3 Impact of Al sputtering on the electrical properties of Si/SiN\textsubscript{x} interface</td>
<td>158</td>
</tr>
<tr>
<td>7.3 Summary and conclusion</td>
<td>160</td>
</tr>
<tr>
<td>8 Cell results of front-junction nPERT solar cells</td>
<td>161</td>
</tr>
<tr>
<td>8.1 One-layer aluminum rear-side metallization (Batch-1 to Batch-4)</td>
<td>162</td>
</tr>
<tr>
<td>8.1.1 Batch-1: Influence of rear-side capping SiO\textsubscript{2} on current generation</td>
<td>162</td>
</tr>
<tr>
<td>8.1.2 Batch-2: Influence of rear doping profile and thermal stress on cell performance</td>
<td>163</td>
</tr>
<tr>
<td>8.1.3 Batch-3: Influence of rear contact spacing on current-voltage characteristic</td>
<td>168</td>
</tr>
<tr>
<td>8.1.4 Batch-4: Influence of aluminum layer thickness on series ohmic losses</td>
<td>171</td>
</tr>
<tr>
<td>8.2 Multi-layer aluminum-based rear-side metallization (Batch 5)</td>
<td>175</td>
</tr>
<tr>
<td>8.3 Summary and conclusion</td>
<td>177</td>
</tr>
<tr>
<td>9 Thesis summary and outlook</td>
<td>179</td>
</tr>
<tr>
<td>10 Deutsche Zusammenfassung (German summary)</td>
<td>185</td>
</tr>
<tr>
<td>References</td>
<td>191</td>
</tr>
<tr>
<td>Own publications</td>
<td>201</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>203</td>
</tr>
</tbody>
</table>