DESIGN OF SELF-ADAPTATION IN DISTRIBUTED EMBEDDED SYSTEMS

Dissertation

for the degree of
Doctor of Natural Sciences (Dr. rer. nat.)
Department of Computer Science
University of Augsburg

Dipl.-Inform. Gereon Weiß

2014
Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Glossary xiii

1 Introduction 1
 1.1 Motivation 1
 1.2 Research Questions and Contributions 3
 1.3 Organisation of this Thesis 4

2 Self-Adaptive Distributed Embedded Systems 5
 2.1 Embedded Systems and Self-Adaptation 5
 2.1.1 Distributed Embedded Systems 6
 2.1.2 Variability 7
 2.1.3 Self-Adaptation 8
 2.2 Model-Driven Development of Embedded Systems 14
 2.2.1 Unified Modeling Language 15
 2.2.2 Architectural Description Languages 16
 2.3 Present Design of Self-Adaptation 18
 2.3.1 Self-Adaptation through Software-Product-Lines 18
 2.3.2 Design of Modal Behavior 21
 2.3.3 Discussions on the Design of Self-Adaptation 24
 2.4 Example Domain for Distributed Embedded Systems 25
 2.4.1 AUTOSAR 28
 2.4.2 Runtime Variability 29
 2.4.3 Mode Management 30
 2.5 Challenges for the Development 32
 2.5.1 Constraints for Distributed Embedded Systems Development 32
 2.5.2 Challenges for the Design of Self-Adaptation 34
 2.6 Conclusions 35

3 Related Work 37
 3.1 Design Approaches for Self-Adaptation 37
 3.1.1 DiVA 38
 3.1.2 Genie 38
 3.1.3 MADAM & MUSIC 39
 3.1.4 Construction of Self-Organized Multi-Agent Systems 40
3.1.5 DySCAS ... 40
3.1.6 Self-Optimizing Concepts and Structures in Mechanical Engineering .. 41

3.2 Design of Modal Behavior .. 42
- 3.2.1 Multimodal Control with Supervisory Control Theory 42
- 3.2.2 COLA Component Language .. 42
- 3.2.3 Metamodes for Dynamic Reconfiguration 43
- 3.2.4 Gaspard2 .. 44

3.3 Software Product Lines for Runtime Adaptation 45
- 3.3.1 Flexible Feature Composition 45
- 3.3.2 Chameleon & MARS .. 45
- 3.3.3 Dynamic Software Product Line Approaches 46

3.4 Runtime Information ... 47
- 3.4.1 Stitch .. 47
- 3.4.2 XML-based Runtime Descriptions 48
- 3.4.3 Binary Runtime Descriptions 49
- 3.4.4 Reflection for Self-Adaptation 49

3.5 Conclusions .. 50

4 Model-Driven Design of Self-Adaptation 53

4.1 Novel Approach for the Design of Self-Adaptation 53
- 4.1.1 Basic Concepts .. 54
- 4.1.2 Design Levels of Abstraction 56
- 4.1.3 System Model .. 57
- 4.1.4 Degree of Variability .. 63

4.2 Self-X Profile .. 66
- 4.2.1 Architectural Elements ... 67
- 4.2.2 Adaptation Elements ... 69

4.3 Validating Design Architectures through Execution 70
- 4.3.1 SystemC TLM .. 71
- 4.3.2 Integration of EAST-ADL and SystemC 72

4.4 Example Application Case Studies 77
- 4.4.1 Case Study Self-Adaptive Body Control 77
- 4.4.2 Enabling Self-Adaptation in Today's Distributed Embedded Systems ... 83

4.5 Conclusions .. 88

5 Novel Design Concepts for Self-Adaptation 91

5.1 Context Model for Self-Adaptation 92
- 5.1.1 Concepts for the Context Model 92
- 5.1.2 Context Model Integration ... 96
- 5.1.3 Context Model for the Body Control Case Study 97

5.2 Modal Behavior for Self-Adaptive Systems 98
- 5.2.1 System with Modal Behavior 99
- 5.2.2 Design Integration of Extended Modal Behavior 105
- 5.2.3 Designing Self-Adaptation of the Body Control Case Study .. 107

5.3 Runtime Information as Self-Descriptions 110
- 5.3.1 Concepts for Self-Descriptions 111
- 5.3.2 Self-Descriptions Integrated in the Design 113
B.4 Configuration Spaces .. 232
B.5 Self-Descriptions for Finding Allocations 240

C Infotainment Case Study 247

D Smart Car Case Study 249
 D.1 Adaptive Modes ... 251
 D.2 SPL Feature Tree ... 256

E Publications 257