INTRODUCTION TO
NUMERICAL
PROGRAMMING
A Practical Guide for Scientists and Engineers
Using Python and C/C++

Titus Adrien Beu
Babes-Bolyai University
Faculty of Physics
Cluj-Napoca, Romania
Contents

<table>
<thead>
<tr>
<th>Series Preface</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Author</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
<tr>
<td>1 Approximate Numbers</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Sources of Errors in Numerical Calculations</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Absolute and Relative Errors</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Representation of Numbers</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Significant Digits</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Errors of Elementary Operations</td>
<td>7</td>
</tr>
<tr>
<td>References and Suggested Further Reading</td>
<td>10</td>
</tr>
<tr>
<td>2 Basic Programming Techniques</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Programming Concepts</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Functions and Parameters</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Passing Arguments to Python Functions</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Passing Arguments to C/C++ Functions</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Arrays in Python</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Dynamic Array Allocation in C/C++</td>
<td>19</td>
</tr>
<tr>
<td>2.7 Basic Matrix Operations</td>
<td>24</td>
</tr>
<tr>
<td>References and Suggested Further Reading</td>
<td>30</td>
</tr>
<tr>
<td>3 Elements of Scientific Graphics</td>
<td>31</td>
</tr>
<tr>
<td>3.1 The Tkinter Package</td>
<td>31</td>
</tr>
<tr>
<td>3.2 The Canvas Widget</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Simple Tkinter Applications</td>
<td>35</td>
</tr>
<tr>
<td>3.4 Plotting Functions of One Variable</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Graphics Library graphlib.py</td>
<td>44</td>
</tr>
<tr>
<td>3.6 Creating Plots in C++ Using the Library graphlib.py</td>
<td>57</td>
</tr>
<tr>
<td>References and Suggested Further Reading</td>
<td>61</td>
</tr>
<tr>
<td>4 Sorting and Indexing</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Bubble Sort</td>
<td>64</td>
</tr>
<tr>
<td>4.3 Insertion Sort</td>
<td>66</td>
</tr>
</tbody>
</table>

vii
4.4 Quicksort .. 70
4.5 Indexing and Ranking 71
4.6 Implementations in C/C++ 75
4.7 Problems ... 78
References and Suggested Further Reading 84

5 Evaluation of Functions 85
5.1 Evaluation of Polynomials by Horner’s Scheme 85
5.2 Evaluation of Analytic Functions 88
5.3 Continued Fractions 91
5.4 Orthogonal Polynomials 94
5.5 Spherical Harmonics—Associated Legendre Functions . 98
5.6 Spherical Bessel Functions 102
5.7 Implementations in C/C++ 105
5.8 Problems ... 113
References and Suggested Further Reading 125

6 Algebraic and Transcendental Equations 127
6.1 Root Separation .. 127
6.2 Bisection Method 129
6.3 Method of False Position 132
6.4 Method of Successive Approximations 134
6.5 Newton’s Method 139
6.6 Secant Method ... 142
6.7 Birge-Vieta Method 144
6.8 Newton’s Method for Systems of Nonlinear Equations . 147
6.9 Implementations in C/C++ 151
6.10 Problems ... 157
References and Suggested Further Reading 168

7 Systems of Linear Equations 169
7.1 Introduction .. 169
7.2 Gaussian Elimination with Backward Substitution 169
7.3 Gauss–Jordan Elimination 179
7.4 LU Factorization 187
7.5 Inversion of Triangular Matrices 195
7.6 Cholesky Factorization 197
7.7 Tridiagonal Systems of Linear Equations 203
7.8 Block Tridiagonal Systems of Linear Equations 207
7.9 Complex Matrix Equations 208
7.10 Jacobi and Gauss–Seidel Iterative Methods 209
7.11 Implementations in C/C++ 213
7.12 Problems ... 223
References and Suggested Further Reading 231

8 Eigenvalue Problems 233
8.1 Introduction .. 233
8.2 Diagonalization of Matrices by Similarity Transformations ... 234
8.3 Jacobi Method ... 235
8.4 Generalized Eigenvalue Problems for Symmetric Matrices ... 243
8.5 Implementations in C/C++ 246
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Problems</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>References and Suggested Further Reading</td>
<td>264</td>
</tr>
<tr>
<td>9</td>
<td>Modeling of Tabulated Functions</td>
<td>265</td>
</tr>
<tr>
<td>9.1</td>
<td>Interpolation and Regression</td>
<td>265</td>
</tr>
<tr>
<td>9.2</td>
<td>Lagrange Interpolation Polynomial</td>
<td>268</td>
</tr>
<tr>
<td>9.3</td>
<td>Neville’s Interpolation Method</td>
<td>273</td>
</tr>
<tr>
<td>9.4</td>
<td>Cubic Spline Interpolation</td>
<td>276</td>
</tr>
<tr>
<td>9.5</td>
<td>Linear Regression</td>
<td>283</td>
</tr>
<tr>
<td>9.6</td>
<td>Multilinear Regression Models</td>
<td>287</td>
</tr>
<tr>
<td>9.7</td>
<td>Nonlinear Regression: The Levenberg–Marquardt Method</td>
<td>293</td>
</tr>
<tr>
<td>9.8</td>
<td>Implementations in C/C++</td>
<td>301</td>
</tr>
<tr>
<td>9.9</td>
<td>Problems</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>References and Suggested Further Reading</td>
<td>331</td>
</tr>
<tr>
<td>10</td>
<td>Integration of Functions</td>
<td>333</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>10.2</td>
<td>Trapezoidal Rule; A Heuristic Approach</td>
<td>333</td>
</tr>
<tr>
<td>10.3</td>
<td>The Newton–Cotes Quadrature Formulas</td>
<td>335</td>
</tr>
<tr>
<td>10.4</td>
<td>Trapezoidal Rule</td>
<td>337</td>
</tr>
<tr>
<td>10.5</td>
<td>Simpson’s Rule</td>
<td>339</td>
</tr>
<tr>
<td>10.6</td>
<td>Adaptive Quadrature Methods</td>
<td>341</td>
</tr>
<tr>
<td>10.7</td>
<td>Romberg’s Method</td>
<td>344</td>
</tr>
<tr>
<td>10.8</td>
<td>Improper Integrals: Open Formulas</td>
<td>348</td>
</tr>
<tr>
<td>10.9</td>
<td>Midpoint Rule</td>
<td>352</td>
</tr>
<tr>
<td>10.10</td>
<td>Gaussian Quadratures</td>
<td>354</td>
</tr>
<tr>
<td>10.11</td>
<td>Multidimensional Integration</td>
<td>361</td>
</tr>
<tr>
<td>10.12</td>
<td>Adaptive Multidimensional Integration</td>
<td>369</td>
</tr>
<tr>
<td>10.13</td>
<td>Implementations in C/C++</td>
<td>372</td>
</tr>
<tr>
<td>10.14</td>
<td>Problems</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>References and Suggested Further Reading</td>
<td>393</td>
</tr>
<tr>
<td>11</td>
<td>Monte Carlo Method</td>
<td>395</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>395</td>
</tr>
<tr>
<td>11.2</td>
<td>Integration of Functions</td>
<td>396</td>
</tr>
<tr>
<td>11.3</td>
<td>Importance Sampling</td>
<td>399</td>
</tr>
<tr>
<td>11.4</td>
<td>Multidimensional Integrals</td>
<td>402</td>
</tr>
<tr>
<td>11.5</td>
<td>Generation of Random Numbers</td>
<td>408</td>
</tr>
<tr>
<td>11.6</td>
<td>Implementations in C/C++</td>
<td>415</td>
</tr>
<tr>
<td>11.7</td>
<td>Problems</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>References and Suggested Further Reading</td>
<td>426</td>
</tr>
<tr>
<td>12</td>
<td>Ordinary Differential Equations</td>
<td>427</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>427</td>
</tr>
<tr>
<td>12.2</td>
<td>Taylor Series Method</td>
<td>429</td>
</tr>
<tr>
<td>12.3</td>
<td>Euler’s Method</td>
<td>431</td>
</tr>
<tr>
<td>12.4</td>
<td>Runge–Kutta Methods</td>
<td>434</td>
</tr>
<tr>
<td>12.5</td>
<td>Adaptive Step Size Control</td>
<td>440</td>
</tr>
<tr>
<td>12.6</td>
<td>Methods for Second-Order ODEs</td>
<td>447</td>
</tr>
<tr>
<td>12.7</td>
<td>Numerov’s Method</td>
<td>454</td>
</tr>
<tr>
<td>12.8</td>
<td>Shooting Methods for Two-Point Problems</td>
<td>457</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12.9 Finite-Difference Methods for Linear Two-Point Problems</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>12.10 Implementations in C/C++</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>12.11 Problems</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>References and Suggested Further Reading</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>13 Partial Differential Equations</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>13.2 Boundary-Value Problems for Elliptic Differential Equations</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>13.3 Initial-Value Problems for Parabolic Differential Equations</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>13.4 Time-Dependent Schrödinger Equation</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>13.5 Initial-Value Problems for Hyperbolic Differential Equations</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>13.6 Implementations in C/C++</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>13.7 Problems</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>References and Suggested Further Reading</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Dynamic Array Allocation in C/C++</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Basic Operations with Vectors and Matrices</td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>Appendix C: Embedding Python in C/C++</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td>Appendix D: The Numerical Libraries <code>numxlib.py</code> and <code>numxlib.h</code></td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Appendix E: The Graphics Library <code>graphlib.py</code> Based on Tkinter</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>Appendix F: The C++ Interface to the Graphics Library <code>graphlib.py</code></td>
<td>627</td>
<td></td>
</tr>
<tr>
<td>Appendix G: List of Programs by Chapter</td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>641</td>
<td></td>
</tr>
</tbody>
</table>