Lectures on Lyapunov Exponents

MARCELO VIANA
Instituto Nacional de Matemática Pura e Aplicada (IMPA),
Rio de Janeiro

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface
page xi

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>Existence of Lyapunov exponents</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>Pinching and twisting</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
<td>Continuity of Lyapunov exponents</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>Notes</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>Exercises</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>Examples</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2.1.1</td>
<td>Products of random matrices</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2.1.2</td>
<td>Derivative cocycles</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2.1.3</td>
<td>Schrödinger cocycles</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>Hyperbolic cocycles</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2.2.1</td>
<td>Definition and properties</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2.2.2</td>
<td>Stability and continuity</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>2.2.3</td>
<td>Obstructions to hyperbolicity</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>Notes</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>Exercises</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Subadditive ergodic theorem</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3.1.1</td>
<td>Preparing the proof</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>3.1.2</td>
<td>Fundamental lemma</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>3.1.3</td>
<td>Estimating φ_-</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>3.1.4</td>
<td>Bounding φ_+ from above</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>Theorem of Furstenberg and Kesten</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
<td>Herman’s formula</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>Theorem of Oseledets in dimension 2</td>
<td>30</td>
</tr>
</tbody>
</table>
Contents

3.4.1 One-sided theorem 30
3.4.2 Two-sided theorem 34
3.5 Notes 36
3.6 Exercises 36

4 Multiplicative ergodic theorem 38
4.1 Statements 38
4.2 Proof of the one-sided theorem 40
4.2.1 Constructing the Oseledets flag 40
4.2.2 Measurability 41
4.2.3 Time averages of skew products 44
4.2.4 Applications to linear cocycles 47
4.2.5 Dimension reduction 48
4.2.6 Completion of the proof 52
4.3 Proof of the two-sided theorem 53
4.3.1 Upgrading to a decomposition 53
4.3.2 Subexponential decay of angles 55
4.3.3 Consequences of subexponential decay 56
4.4 Two useful constructions 59
4.4.1 Inducing and Lyapunov exponents 59
4.4.2 Invariant cones 61
4.5 Notes 63
4.6 Exercises 64

5 Stationary measures 67
5.1 Random transformations 67
5.2 Stationary measures 70
5.3 Ergodic stationary measures 75
5.4 Invertible random transformations 77
5.4.1 Lift of an invariant measure 79
5.4.2 s-states and u-states 81
5.5 Disintegrations of s-states and u-states 85
5.5.1 Conditional probabilities 85
5.5.2 Martingale construction 86
5.5.3 Remarks on 2-dimensional linear cocycles 89
5.6 Notes 91
5.7 Exercises 91

6 Exponents and invariant measures 96
6.1 Representation of Lyapunov exponents 97
6.2 Furstenberg’s formula 102
6.2.1 Irreducible cocycles 102
Contents

6.2.2 Continuity of exponents for irreducible cocycles 103
6.3 Theorem of Furstenberg 105
6.3.1 Non-atomic measures 106
6.3.2 Convergence to a Dirac mass 108
6.3.3 Proof of Theorem 6.11 111
6.4 Notes 112
6.5 Exercises 113

7 Invariance principle 115
7.1 Statement and proof 116
7.2 Entropy is smaller than exponents 117
7.2.1 The volume case 118
7.2.2 Proof of Proposition 7.4. 119
7.3 Furstenberg’s criterion 124
7.4 Lyapunov exponents of typical cocycles 125
7.4.1 Eigenvalues and eigenspaces 126
7.4.2 Proof of Theorem 7.12 128
7.5 Notes 130
7.6 Exercises 131

8 Simplicity 133
8.1 Pinching and twisting 133
8.2 Proof of the simplicity criterion 134
8.3 Invariant section 137
8.3.1 Grassmannian structures 137
8.3.2 Linear arrangements and the twisting property 139
8.3.3 Control of eccentricity 140
8.3.4 Convergence of conditional probabilities 143
8.4 Notes 147
8.5 Exercises 147

9 Generic cocycles 150
9.1 Semi-continuity 151
9.2 Theorem of Mañé–Bochi 153
9.2.1 Interchanging the Oseledets subspaces 155
9.2.2 Coboundary sets 157
9.2.3 Proof of Theorem 9.5 160
9.2.4 Derivative cocycles and higher dimensions 161
9.3 Hölder examples of discontinuity 164
9.4 Notes 168
9.5 Exercises 169
10 Continuity 171
10.1 Invariant subspaces 172
10.2 Expanding points in projective space 174
10.3 Proof of the continuity theorem 176
10.4 Couplings and energy 178
10.5 Conclusion of the proof 181
10.5.1 Proof of Proposition 10.9 183
10.6 Final comments 186
10.7 Notes 189
10.8 Exercises 189

References 191

Index 198