Modern Classical Physics
Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics

KIP S. THORNE and ROGER D. BLANDFORD
CONTENTS

List of Boxes xxvii
Preface xxxi
Acknowledgments xxxix

PART I FOUNDATIONS 1

1 Newtonian Physics: Geometric Viewpoint 5
1.1 Introduction 5
 1.1.1 The Geometric Viewpoint on the Laws of Physics 5
 1.1.2 Purposes of This Chapter 7
 1.1.3 Overview of This Chapter 7
1.2 Foundational Concepts 8
1.3 Tensor Algebra without a Coordinate System 10
1.4 Particle Kinetics and Lorentz Force in Geometric Language 13
1.5 Component Representation of Tensor Algebra 16
 1.5.1 Slot-Naming Index Notation 17
 1.5.2 Particle Kinetics in Index Notation 19
1.6 Orthogonal Transformations of Bases 20
1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl 22
1.8 Volumes, Integration, and Integral Conservation Laws 26
 1.8.1 Gauss’s and Stokes’ Theorems 27
1.9 The Stress Tensor and Momentum Conservation 29
 1.9.1 Examples: Electromagnetic Field and Perfect Fluid 30
 1.9.2 Conservation of Momentum 31
1.10 Geometrized Units and Relativistic Particles for Newtonian Readers 33
 1.10.1 Geometrized Units 33
 1.10.2 Energy and Momentum of a Moving Particle 34
Bibliographic Note 35

TE Track Two; see page xxxiv
N Nonrelativistic (Newtonian) kinetic theory; see page 96
R Relativistic theory; see page 96
2 Special Relativity: Geometric Viewpoint 37

2.1 Overview 37
2.2 Foundational Concepts 38
 2.2.1 Inertial Frames, Inertial Coordinates, Events, Vectors, and Spacetime Diagrams 38
 2.2.2 The Principle of Relativity and Constancy of Light Speed 42
 2.2.3 The Interval and Its Invariance 45
2.3 Tensor Algebra without a Coordinate System 48
2.4 Particle Kinetics and Lorentz Force without a Reference Frame 49
 2.4.1 Relativistic Particle Kinetics: World Lines, 4-Velocity, 4-Momentum and Its Conservation, 4-Force 49
 2.4.2 Geometric Derivation of the Lorentz Force Law 52
2.5 Component Representation of Tensor Algebra 54
 2.5.1 Lorentz Coordinates 54
 2.5.2 Index Gymnastics 54
 2.5.3 Slot-Naming Notation 56
2.6 Particle Kinetics in Index Notation and in a Lorentz Frame 57
2.7 Lorentz Transformations 63
2.8 Spacetime Diagrams for Boosts 65
2.9 Time Travel 67
 2.9.1 Measurement of Time; Twins Paradox 67
 2.9.2 Wormholes 68
 2.9.3 Wormhole as Time Machine 69
2.10 Directional Derivatives, Gradients, and the Levi-Civita Tensor 70
2.11 Nature of Electric and Magnetic Fields; Maxwell's Equations 71
2.12 Volumes, Integration, and Conservation Laws 75
 2.12.1 Spacetime Volumes and Integration 75
 2.12.2 Conservation of Charge in Spacetime 78
 2.12.3 Conservation of Particles, Baryon Number, and Rest Mass 79
2.13 Stress-Energy Tensor and Conservation of 4-Momentum 82
 2.13.1 Stress-Energy Tensor 82
 2.13.2 4-Momentum Conservation 84
 2.13.3 Stress-Energy Tensors for Perfect Fluids and Electromagnetic Fields 85

Bibliographic Note 88

PART II STATISTICAL PHYSICS 91

3 Kinetic Theory 95
3.1 Overview 95
3.2 Phase Space and Distribution Function 97
 3.2.1 Newtonian Number Density in Phase Space, \(\mathcal{N} \) 97
 3.2.2 Relativistic Number Density in Phase Space, \(\mathcal{N} \) 99

viii Contents
3.2.3 Distribution Function $f(x, v, t)$ for Particles in a Plasma 105
3.2.4 Distribution Function I_v/v^3 for Photons 106
3.2.5 Mean Occupation Number η 108
3.3 Thermal-Equilibrium Distribution Functions 111
3.4 Macroscopic Properties of Matter as Integrals over Momentum Space 117
 3.4.1 Particle Density n, Flux S, and Stress Tensor T 117
 3.4.2 Relativistic Number-Flux 4-Vector \vec{S} and Stress-Energy Tensor T 118
3.5 Isotropic Distribution Functions and Equations of State 120
 3.5.1 Newtonian Density, Pressure, Energy Density, and Equation of State 120
 3.5.2 Equations of State for a Nonrelativistic Hydrogen Gas 122
 3.5.3 Relativistic Density, Pressure, Energy Density, and Equation of State 125
 3.5.4 Equation of State for a Relativistic Degenerate Hydrogen Gas 126
 3.5.5 Equation of State for Radiation 128
3.6 Evolution of the Distribution Function: Liouville’s Theorem, the Collisionless Boltzmann Equation, and the Boltzmann Transport Equation 132
3.7 Transport Coefficients 139
 3.7.1 Diffusive Heat Conduction inside a Star 142
 3.7.2 Order-of-Magnitude Analysis 143
 3.7.3 Analysis Using the Boltzmann Transport Equation 144

Bibliographic Note 153

4 Statistical Mechanics 155
4.1 Overview 155
4.2 Systems, Ensembles, and Distribution Functions 157
 4.2.1 Systems 157
 4.2.2 Ensembles 160
 4.2.3 Distribution Function 161
4.3 Liouville’s Theorem and the Evolution of the Distribution Function 166
4.4 Statistical Equilibrium 168
 4.4.1 Canonical Ensemble and Distribution 169
 4.4.2 General Equilibrium Ensemble and Distribution; Gibbs Ensemble; Grand Canonical Ensemble 172
 4.4.3 Fermi-Dirac and Bose-Einstein Distributions 174
 4.4.4 Equipartition Theorem for Quadratic, Classical Degrees of Freedom 177
4.5 The Microcanonical Ensemble 178
4.6 The Ergodic Hypothesis 180
4.7 Entropy and Evolution toward Statistical Equilibrium 181
 4.7.1 Entropy and the Second Law of Thermodynamics 181
 4.7.2 What Causes the Entropy to Increase? 183
4.8 Entropy per Particle 191
4.9 Bose-Einstein Condensate 193
5.7 Van der Waals Gas: Volume Fluctuations and Gas-to-Liquid Phase Transition 266
5.8 Magnetic Materials 270
 5.8.1 Paramagnetism; The Curie Law 271
 5.8.2 Ferromagnetism: The Ising Model 272
 5.8.3 Renormalization Group Methods for the Ising Model 273
 5.8.4 Monte Carlo Methods for the Ising Model 279
Bibliographic Note 282

6 Random Processes 283
6.1 Overview 283
6.2 Fundamental Concepts 285
 6.2.1 Random Variables and Random Processes 285
 6.2.2 Probability Distributions 286
 6.2.3 Ergodic Hypothesis 288
6.3 Markov Processes and Gaussian Processes 289
 6.3.1 Markov Processes; Random Walk 289
 6.3.2 Gaussian Processes and the Central Limit Theorem; Random Walk 292
 6.3.3 Doob's Theorem for Gaussian-Markov Processes, and Brownian Motion 295
6.4 Correlation Functions and Spectral Densities 297
 6.4.1 Correlation Functions; Proof of Doob's Theorem 297
 6.4.2 Spectral Densities 299
 6.4.3 Physical Meaning of Spectral Density, Light Spectra, and Noise in a Gravitational Wave Detector 301
 6.4.4 The Wiener-Khintchine Theorem; Cosmological Density Fluctuations 303
6.5 2-Dimensional Random Processes 306
 6.5.1 Cross Correlation and Correlation Matrix 306
 6.5.2 Spectral Densities and the Wiener-Khintchine Theorem 307
6.6 Noise and Its Types of Spectra 308
 6.6.1 Shot Noise, Flicker Noise, and Random-Walk Noise; Cesium Atomic Clock 308
 6.6.2 Information Missing from Spectral Density 310
6.7 Filtering Random Processes 311
 6.7.1 Filters, Their Kernels, and the Filtered Spectral Density 311
 6.7.2 Brownian Motion and Random Walks 313
 6.7.3 Extracting a Weak Signal from Noise: Band-Pass Filter, Wiener's Optimal Filter, Signal-to-Noise Ratio, and Allan Variance of Clock Noise 315
 6.7.4 Shot Noise 321
6.8 Fluctuation-Dissipation Theorem 323
 6.8.1 Elementary Version of the Fluctuation-Dissipation Theorem; Langevin Equation, Johnson Noise in a Resistor, and Relaxation Time for Brownian Motion 323
 6.8.2 Generalized Fluctuation-Dissipation Theorem; Thermal Noise in a Laser Beam's Measurement of Mirror Motions; Standard Quantum Limit for Measurement Accuracy and How to Evade It 331

Contents xi
PART III OPTICS 347

7 Geometric Optics 351

7.1 Overview 351

7.2 Waves in a Homogeneous Medium 352

7.2.1 Monochromatic Plane Waves; Dispersion Relation 352

7.2.2 Wave Packets 354

7.3 Waves in an Inhomogeneous, Time-Varying Medium: The Eikonal Approximation and Geometric Optics 357

7.3.1 Geometric Optics for a Prototypical Wave Equation 358

7.3.2 Connection of Geometric Optics to Quantum Theory 362

7.3.3 Geometric Optics for a General Wave 366

7.3.4 Examples of Geometric-Optics Wave Propagation 368

7.3.5 Relation to Wave Packets; Limitations of the Eikonal Approximation and Geometric Optics 369

7.3.6 Fermat’s Principle 371

7.4 Paraxial Optics 375

7.4.1 Axisymmetric, Paraxial Systems: Lenses, Mirrors, Telescopes, Microscopes, and Optical Cavities 377

7.4.2 Converging Magnetic Lens for Charged Particle Beam 381

7.5 Catastrophe Optics 384

7.5.1 Image Formation 384

7.5.2 Aberrations of Optical Instruments 395

7.6 Gravitational Lenses 396

7.6.1 Gravitational Deflection of Light 396

7.6.2 Optical Configuration 397

7.6.3 Microlensing 398

7.6.4 Lensing by Galaxies 401

7.7 Polarization 405

7.7.1 Polarization Vector and Its Geometric-Optics Propagation Law 405

7.7.2 Geometric Phase 406

Bibliographic Note 406
8 Diffraction 411

8.1 Overview 411

8.2 Helmholtz-Kirchhoff Integral 413
 8.2.1 Diffraction by an Aperture 414
 8.2.2 Spreading of the Wavefront: Fresnel and Fraunhofer Regions 417

8.3 Fraunhofer Diffraction 420
 8.3.1 Diffraction Grating 422
 8.3.2 Airy Pattern of a Circular Aperture: Hubble Space Telescope 425
 8.3.3 Babinet's Principle 428

8.4 Fresnel Diffraction 429
 8.4.1 Rectangular Aperture, Fresnel Integrals, and the Cornu Spiral 430
 8.4.2 Unobscured Plane Wave 432
 8.4.3 Fresnel Diffraction by a Straight Edge: Lunar Occultation of a Radio Source 432
 8.4.4 Circular Apertures: Fresnel Zones and Zone Plates 434

8.5 Paraxial Fourier Optics 436
 8.5.1 Coherent Illumination 437
 8.5.2 Point-Spread Functions 438
 8.5.3 Abbé's Description of Image Formation by a Thin Lens 439
 8.5.4 Image Processing by a Spatial Filter in the Focal Plane of a Lens: High-Pass, Low-Pass, and Notch Filters; Phase-Contrast Microscopy 441
 8.5.5 Gaussian Beams: Optical Cavities and Interferometric Gravitational-Wave Detectors 445

8.6 Diffraction at a Caustic 451

Bibliographic Note 454

9 Interference and Coherence 455

9.1 Overview 455

9.2 Coherence 456
 9.2.1 Young's Slits 456
 9.2.2 Interference with an Extended Source: Van Cittert-Zernike Theorem 459
 9.2.3 More General Formulation of Spatial Coherence; Lateral Coherence Length 462
 9.2.4 Generalization to 2 Dimensions 463
 9.2.5 Michelson Stellar Interferometer; Astronomical Seeing 464
 9.2.6 Temporal Coherence 472
 9.2.7 Michelson Interferometer and Fourier-Transform Spectroscopy 474
 9.2.8 Degree of Coherence; Relation to Theory of Random Processes 477

9.3 Radio Telescopes 479
 9.3.1 Two-Element Radio Interferometer 479
 9.3.2 Multiple-Element Radio Interferometers 480
 9.3.3 Closure Phase 481
 9.3.4 Angular Resolution 482
9.4 Etaions and Fabry-Perot Interferometers 483
 9.4.1 Multiple-Beam Interferometry; Etalons 483
 9.4.2 Fabry-Perot Interferometer and Modes of a Fabry-Perot Cavity with Spherical Mirrors 490
 9.4.3 Fabry-Perot Applications: Spectrometer, Laser, Mode-Cleaning Cavity, Beam-Shaping Cavity, PDH Laser Stabilization, Optical Frequency Comb 496

9.5 Laser Interferometer Gravitational-Wave Detectors 502

9.6 Power Correlations and Photon Statistics: Hanbury Brown and Twiss Intensity Interferometer 509

Bibliographic Note 512

10 Nonlinear Optics 513

10.1 Overview 513
10.2 Lasers 515
 10.2.1 Basic Principles of the Laser 515
 10.2.2 Types of Lasers and Their Performances and Applications 519
 10.2.3 Ti:Sapphire Mode-Locked Laser 520
 10.2.4 Free Electron Laser 521
10.3 Holography 521
 10.3.1 Recording a Hologram 522
 10.3.2 Reconstructing the 3-Dimensional Image from a Hologram 525
 10.3.3 Other Types of Holography; Applications 527
10.4 Phase-Conjugate Optics 531
10.5 Maxwell’s Equations in a Nonlinear Medium; Nonlinear Dielectric Susceptibilities; Electro-Optic Effects 536
10.6 Three-Wave Mixing in Nonlinear Crystals 540
 10.6.1 Resonance Conditions for Three-Wave Mixing 540
 10.6.2 Three-Wave-Mixing Evolution Equations in a Medium That Is Dispersion-Free and Isotropic at Linear Order 544
 10.6.3 Three-Wave Mixing in a Birefringent Crystal: Phase Matching and Evolution Equations 546
10.7 Applications of Three-Wave Mixing: Frequency Doubling, Optical Parametric Amplification, and Squeezed Light 553
 10.7.1 Frequency Doubling 553
 10.7.2 Optical Parametric Amplification 555
 10.7.3 Degenerate Optical Parametric Amplification: Squeezed Light 556
10.8 Four-Wave Mixing in Isotropic Media 558
 10.8.1 Third-Order Susceptibilities and Field Strengths 558
 10.8.2 Phase Conjugation via Four-Wave Mixing in CS$_2$ Fluid 559
 10.8.3 Optical Kerr Effect and Four-Wave Mixing in an Optical Fiber 562

Bibliographic Note 564

xiv Contents
11 Elastostatics 567

11.1 Overview 567

11.2 Displacement and Strain 570

11.2.1 Displacement Vector and Its Gradient 570

11.2.2 Expansion, Rotation, Shear, and Strain 571

11.3 Stress, Elastic Moduli, and Elastostatic Equilibrium 577

11.3.1 Stress Tensor 577

11.3.2 Realm of Validity for Hooke's Law 580

11.3.3 Elastic Moduli and Elastostatic Stress Tensor 580

11.3.4 Energy of Deformation 582

11.3.5 Thermoelasticity 584

11.3.6 Molecular Origin of Elastic Stress; Estimate of Moduli 585

11.3.7 Elastostatic Equilibrium: Navier-Cauchy Equation 587

11.4 Young's Modulus and Poisson's Ratio for an Isotropic Material: A Simple Elastostatics Problem 589

11.5 Reducing the Elastostatic Equations to 1 Dimension for a Bent Beam: Cantilever Bridge, Foucault Pendulum, DNA Molecule, Elastica 592

11.6 Buckling and Bifurcation of Equilibria 602

11.6.1 Elementary Theory of Buckling and Bifurcation 602

11.6.2 Collapse of the World Trade Center Buildings 605

11.6.3 Buckling with Lateral Force; Connection to Catastrophe Theory 606

11.6.4 Other Bifurcations: Venus Fly Trap, Whirling Shaft, Triaxial Stars, and Onset of Turbulence 607

11.7 Reducing the Elastostatic Equations to 2 Dimensions for a Deformed Thin Plate: Stress Polishing a Telescope Mirror 609

11.8 Cylindrical and Spherical Coordinates: Connection Coefficients and Components of the Gradient of the Displacement Vector 614

11.9 Solving the 3-Dimensional Navier-Cauchy Equation in Cylindrical Coordinates 619

11.9.1 Simple Methods: Pipe Fracture and Torsion Pendulum 619

11.9.2 Separation of Variables and Green's Functions: Thermoelastic Noise in Mirrors 622

Bibliographic Note 627

12 Elastodynamics 629

12.1 Overview 629

12.2 Basic Equations of Elastodynamics; Waves in a Homogeneous Medium 630

12.2.1 Equation of Motion for a Strained Elastic Medium 630

12.2.2 Elastodynamic Waves 636

12.2.3 Longitudinal Sound Waves 637
12.2.4 Transverse Shear Waves 638
12.2.5 Energy of Elastodynamic Waves 640

12.3 Waves in Rods, Strings, and Beams 642
12.3.1 Compression Waves in a Rod 643
12.3.2 Torsion Waves in a Rod 643
12.3.3 Waves on Strings 644
12.3.4 Flexural Waves on a Beam 645
12.3.5 Bifurcation of Equilibria and Buckling (Once More) 647

12.4 Body Waves and Surface Waves—Seismology and Ultrasound 648
12.4.1 Body Waves 650
12.4.2 Edge Waves 654
12.4.3 Green’s Function for a Homogeneous Half-Space 658
12.4.4 Free Oscillations of Solid Bodies 661
12.4.5 Seismic Tomography 663
12.4.6 Ultrasound; Shock Waves in Solids 663

12.5 The Relationship of Classical Waves to Quantum Mechanical Excitations 667
Bibliographic Note 670

PART V FLUID DYNAMICS 671

13 Foundations of Fluid Dynamics 675
13.1 Overview 675
13.2 The Macroscopic Nature of a Fluid: Density, Pressure, Flow Velocity; Liquids versus Gases 677
13.3 Hydrostatics 681
13.3.1 Archimedes’ Law 684
13.3.2 Nonrotating Stars and Planets 686
13.3.3 Rotating Fluids 689
13.4 Conservation Laws 691
13.5 The Dynamics of an Ideal Fluid 695
13.5.1 Mass Conservation 696
13.5.2 Momentum Conservation 696
13.5.3 Euler Equation 697
13.5.4 Bernoulli’s Theorem 697
13.5.5 Conservation of Energy 704
13.6 Incompressible Flows 709
13.7 Viscous Flows with Heat Conduction 710
13.7.1 Decomposition of the Velocity Gradient into Expansion, Vorticity, and Shear 710
13.7.2 Navier-Stokes Equation 711
13.7.3 Molecular Origin of Viscosity 713
13.7.4 Energy Conservation and Entropy Production 714
13.7.5 Reynolds Number 716
13.7.6 Pipe Flow 716

13.8 Relativistic Dynamics of a Perfect Fluid 719
13.8.1 Stress-Energy Tensor and Equations of Relativistic Fluid Mechanics 719
13.8.2 Relativistic Bernoulli Equation and Ultrarelativistic Astrophysical Jets 721
13.8.3 Nonrelativistic Limit of the Stress-Energy Tensor 723

Bibliographie Note 726

14 Vorticity 729

14.1 Overview 729
14.2 Vorticity, Circulation, and Their Evolution 731
 14.2.1 Vorticity Evolution 734
 14.2.2 Barotropic, Inviscid, Compressible Flows: Vortex Lines Frozen into Fluid 736
 14.2.3 Tornados 738
 14.2.4 Circulation and Kelvin’s Theorem 739
 14.2.5 Diffusion of Vortex Lines 741
 14.2.6 Sources of Vorticity 744

14.3 Low-Reynolds-Number Flow—Stokes Flow and Sedimentation 746
 14.3.1 Motivation: Climate Change 748
 14.3.2 Stokes Flow 749
 14.3.3 Sedimentation Rate 754

14.4 High-Reynolds-Number Flow—Laminar Boundary Layers 757
 14.4.1 Blasius Velocity Profile Near a Flat Plate: Stream Function and Similarity Solution 758
 14.4.2 Blasius Vorticity Profile 763
 14.4.3 Viscous Drag Force on a Flat Plate 763
 14.4.4 Boundary Layer Near a Curved Surface: Separation 764

14.5 Nearly Rigidly Rotating Flows—Earth’s Atmosphere and Oceans 766
 14.5.1 Equations of Fluid Dynamics in a Rotating Reference Frame 767
 14.5.2 Geostrophic Flows 770
 14.5.3 Taylor-Pröudman Theorem 771
 14.5.4 Ekman Boundary Layers 772

14.6 Instabilities of Shear Flows—Billow Clouds and Turbulence in the Stratosphere 778
 14.6.1 Discontinuous Flow: Kelvin-Helmholtz Instability 778
 14.6.2 Discontinuous Flow with Gravity 782
 14.6.3 Smoothly Stratified Flows: Rayleigh and Richardson Criteria for Instability 784

Bibliographie Note 786

15 Turbulence 787

15.1 Overview 787
15.2 The Transition to Turbulence—Flow Past a Cylinder 789
15.3 Empirical Description of Turbulence 798
 15.3.1 The Role of Vorticity in Turbulence 799
15.4 Semiquantitative Analysis of Turbulence 800
 15.4.1 Weak-Turbulence Formalism 800
 15.4.2 Turbulent Viscosity 804
 15.4.3 Turbulent Wakes and Jets; Entrainment; the Coanda Effect 805
 15.4.4 Kolmogorov Spectrum for Fully Developed, Homogeneous, Isotropic Turbulence 810
15.5 Turbulent Boundary Layers 817
 15.5.1 Profile of a Turbulent Boundary Layer 818
 15.5.2 Coanda Effect and Separation in a Turbulent Boundary Layer 820
 15.5.3 Instability of a Laminar Boundary Layer 822
 15.5.4 Flight of a Ball 823
15.6 The Route to Turbulence—Onset of Chaos 825
 15.6.1 Rotating Couette Flow 825
 15.6.2 Feigenbaum Sequence, Poincaré Maps, and the Period-Doubling Route to Turbulence in Convection 828
 15.6.3 Other Routes to Turbulent Convection 831
 15.6.4 Extreme Sensitivity to Initial Conditions 832
Bibliographic Note 834

16 Waves 835
16.1 Overview 835
16.2 Gravity Waves on and beneath the Surface of a Fluid 837
 16.2.1 Deep-Water Waves and Their Excitation and Damping 840
 16.2.2 Shallow-Water Waves 840
 16.2.3 Capillary Waves and Surface Tension 844
 16.2.4 Helioseismology 848
16.3 Nonlinear Shallow-Water Waves and Solitons 850
 16.3.1 Korteweg-de Vries (KdV) Equation 850
 16.3.2 Physical Effects in the KdV Equation 853
 16.3.3 Single-Soliton Solution 854
 16.3.4 Two-Soliton Solution 855
 16.3.5 Solitons in Contemporary Physics 856
16.4 Rossby Waves in a Rotating Fluid 858
16.5 Sound Waves 862
 16.5.1 Wave Energy 863
 16.5.2 Sound Generation 865
 16.5.3 Radiation Reaction, Runaway Solutions, and Matched Asymptotic Expansions 869
Bibliographic Note 874
19.3.3 \(\Theta \)-Pinch 962
19.3.4 Tokamak 963
19.4 Hydromagnetic Flows 965
19.5 Stability of Magnetostatic Equilibria 971
 19.5.1 Linear Perturbation Theory 971
 19.5.2 Z-Pinch: Sausage and Kink Instabilities 975
 19.5.3 The \(\Theta \)-Pinch and Its Toroidal Analog; Flute Instability; Motivation for Tokamak 978
 19.5.4 Energy Principle and Virial Theorems 980
19.6 Dynamos and Reconnection of Magnetic Field Lines 984
 19.6.1 Cowling's Theorem 984
 19.6.2 Kinematic Dynamos 985
 19.6.3 Magnetic Reconnection 986
19.7 Magnetosonic Waves and the Scattering of Cosmic Rays 988
 19.7.1 Cosmic Rays 988
 19.7.2 Magnetosonic Dispersion Relation 989
 19.7.3 Scattering of Cosmic Rays by Alfvén Waves 992
Bibliographic Note 993

PART VI PLASMA PHYSICS 995

20 The Particle Kinetics of Plasma 997
20.1 Overview 997
20.2 Examples of Plasmas and Their Density-Temperature Regimes 998
 20.2.1 Ionization Boundary 998
 20.2.2 Degeneracy Boundary 1000
 20.2.3 Relativistic Boundary 1000
 20.2.4 Pair-Production Boundary 1001
 20.2.5 Examples of Natural and Human-Made Plasmas 1001
20.3 Collective Effects in Plasmas—Debye Shielding and Plasma Oscillations 1003
 20.3.1 Debye Shielding 1003
 20.3.2 Collective Behavior 1004
 20.3.3 Plasma Oscillations and Plasma Frequency 1005
20.4 Coulomb Collisions 1006
 20.4.1 Collision Frequency 1006
 20.4.2 The Coulomb Logarithm 1008
 20.4.3 Thermal Equilibration Rates in a Plasma 1010
 20.4.4 Discussion 1012
20.5 Transport Coefficients 1015
 20.5.1 Coulomb Collisions 1015
 20.5.2 Anomalous Resistivity and Anomalous Equilibration 1016
20.6 Magnetic Field 1019
 20.6.1 Cyclotron Frequency and Larmor Radius 1019
 20.6.2 Validity of the Fluid Approximation 1020
 20.6.3 Conductivity Tensor 1022
20.7 Particle Motion and Adiabatic Invariants 1024
 20.7.1 Homogeneous, Time-Independent Magnetic Field and No Electric Field 1025
 20.7.2 Homogeneous, Time-Independent Electric and Magnetic Fields 1025
 20.7.3 Inhomogeneous, Time-Independent Magnetic Field 1026
 20.7.4 A Slowly Time-Varying Magnetic Field 1029
 20.7.5 Failure of Adiabatic Invariants; Chaotic Orbits 1030
Bibliographic Note 1032

21 Waves in Cold Plasmas: Two-Fluid Formalism 1033
21.1 Overview 1033
21.2 Dielectric Tensor, Wave Equation, and General Dispersion Relation 1035
21.3 Two-Fluid Formalism 1037
21.4 Wave Modes in an Unmagnetized Plasma 1040
 21.4.1 Dielectric Tensor and Dispersion Relation for a Cold, Unmagnetized Plasma 1040
 21.4.2 Plasma Electromagnetic Modes 1042
 21.4.3 Langmuir Waves and Ion-Acoustic Waves in Warm Plasmas 1044
 21.4.4 Cutoffs and Resonances 1049
21.5 Wave Modes in a Cold, Magnetized Plasma 1050
 21.5.1 Dielectric Tensor and Dispersion Relation 1050
 21.5.2 Parallel Propagation 1052
 21.5.3 Perpendicular Propagation 1057
 21.5.4 Propagation of Radio Waves in the Ionosphere; Magnetoionic Theory 1058
 21.5.5 CMA Diagram for Wave Modes in a Cold, Magnetized Plasma 1062
21.6 Two-Stream Instability 1065
Bibliographic Note 1068

22 Kinetic Theory of Warm Plasmas 1069
22.1 Overview 1069
22.2 Basic Concepts of Kinetic Theory and Its Relationship to Two-Fluid Theory 1070
 22.2.1 Distribution Function and Vlasov Equation 1070
 22.2.2 Relation of Kinetic Theory to Two-Fluid Theory 1073
 22.2.3 Jeans' Theorem 1074
22.3 Electrostatic Waves in an Unmagnetized Plasma: Landau Damping 1077
 22.3.1 Formal Dispersion Relation 1077
 22.3.2 Two-Stream Instability 1079
 22.3.3 The Landau Contour 1080
 22.3.4 Dispersion Relation for Weakly Damped or Growing Waves 1085
22.3.5 Langmuir Waves and Their Landau Damping 1086
22.3.6 Ion-Acoustic Waves and Conditions for Their Landau Damping to Be Weak 1088
22.4 Stability of Electrostatic Waves in Unmagnetized Plasmas 1090
 22.4.1 Nyquist's Method 1091
 22.4.2 Penrose's Instability Criterion 1091
22.5 Particle Trapping 1098
22.6 N-Particle Distribution Function 1102
 22.6.1 BBGKY Hierarchy 1103
 22.6.2 Two-Point Correlation Function 1104
 22.6.3 Coulomb Correction to Plasma Pressure 1107
Bibliographic Note 1108

23 Nonlinear Dynamics of Plasmas 1111
23.1 Overview 1111
23.2 Quasilinear Theory in Classical Language 1113
 23.2.1 Classical Derivation of the Theory 1113
 23.2.2 Summary of Quasilinear Theory 1120
 23.2.3 Conservation Laws 1121
 23.2.4 Generalization to 3 Dimensions 1122
23.3 Quasilinear Theory in Quantum Mechanical Language 1123
 23.3.1 Plasmon Occupation Number 1123
 23.3.2 Evolution of for Plasmons via Interaction with Electrons 1124
 23.3.3 Evolution of for Electrons via Interaction with Plasmons 1129
 23.3.4 Emission of Plasmons by Particles in the Presence of a Magnetic Field 1131
 23.3.5 Relationship between Classical and Quantum Mechanical Formalisms 1131
 23.3.6 Evolution of via Three-Wave Mixing 1132
23.4 Quasilinear Evolution of Unstable Distribution Functions—A Bump in the Tail 1136
 23.4.1 Instability of Streaming Cosmic Rays 1138
23.5 Parametric Instabilities; Laser Fusion 1140
23.6 Solitons and Collisionless Shock Waves 1142
Bibliographic Note 1149

PART VII GENERAL RELATIVITY 1151

24 From Special to General Relativity 1153
24.1 Overview 1153
24.2 Special Relativity Once Again 1153
 24.2.1 Geometric, Frame-Independent Formulation 1154
 24.2.2 Inertial Frames and Components of Vectors, Tensors, and Physical Laws 1156
 24.2.3 Light Speed, the Interval, and Spacetime Diagrams 1159
24.3 Differential Geometry in General Bases and in Curved Manifolds 1160
 24.3.1 Nonorthonormal Bases 1161
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3.2 Vectors as Directional Derivatives; Tangent Space; Commutators</td>
<td>1165</td>
</tr>
<tr>
<td>24.3.3 Differentiation of Vectors and Tensors; Connection Coefficients</td>
<td>1169</td>
</tr>
<tr>
<td>24.3.4 Integration</td>
<td>1174</td>
</tr>
<tr>
<td>24.4 The Stress-Energy Tensor Revisited</td>
<td>1176</td>
</tr>
<tr>
<td>24.5 The Proper Reference Frame of an Accelerated Observer</td>
<td>1180</td>
</tr>
<tr>
<td>24.5.1 Relation to Inertial Coordinates; Metric in Proper Reference</td>
<td>1183</td>
</tr>
<tr>
<td>24.5.2 Geodesic Equation for a Freely Falling Particle</td>
<td>1184</td>
</tr>
<tr>
<td>24.5.3 Uniformly Accelerated Observer</td>
<td>1186</td>
</tr>
<tr>
<td>24.5.4 Rindler Coordinates for Minkowski Spacetime</td>
<td>1187</td>
</tr>
<tr>
<td>25 Fundamental Concepts of General Relativity</td>
<td>1191</td>
</tr>
<tr>
<td>25.1 History and Overview</td>
<td>1191</td>
</tr>
<tr>
<td>25.2 Local Lorentz Frames, the Principle of Relativity, and Einstein's</td>
<td>1195</td>
</tr>
<tr>
<td>25.3 The Spacetime Metric, and Gravity as a Curvature of Spacetime</td>
<td>1196</td>
</tr>
<tr>
<td>25.4 Free-Fall Motion and Geodesics of Spacetime</td>
<td>1200</td>
</tr>
<tr>
<td>25.5 Relative Acceleration, Tidal Gravity, and Spacetime Curvature</td>
<td>1206</td>
</tr>
<tr>
<td>25.5.1 Newtonian Description of Tidal Gravity</td>
<td>1207</td>
</tr>
<tr>
<td>25.5.2 Relativistic Description of Tidal Gravity</td>
<td>1208</td>
</tr>
<tr>
<td>25.5.3 Comparison of Newtonian and Relativistic Descriptions</td>
<td>1210</td>
</tr>
<tr>
<td>25.6 Properties of the Riemann Curvature Tensor</td>
<td>1213</td>
</tr>
<tr>
<td>25.7 Delicacies in the Equivalence Principle, and Some Nongravitational</td>
<td>1217</td>
</tr>
<tr>
<td>25.8 The Einstein Field Equation</td>
<td>1221</td>
</tr>
<tr>
<td>25.9 Weak Gravitational Fields</td>
<td>1224</td>
</tr>
<tr>
<td>25.9.1 Newtonian Limit of General Relativity</td>
<td>1225</td>
</tr>
<tr>
<td>25.9.2 Linearized Theory</td>
<td>1227</td>
</tr>
<tr>
<td>25.9.3 Gravitational Field outside a Stationary, Linearized Source of</td>
<td>1231</td>
</tr>
<tr>
<td>25.9.4 Conservation Laws for Mass, Momentum, and Angular Momentum in</td>
<td>1237</td>
</tr>
<tr>
<td>25.9.5 Conservation Laws for a Strong-Gravity Source</td>
<td>1238</td>
</tr>
<tr>
<td>26 Relativistic Stars and Black Holes</td>
<td>1241</td>
</tr>
<tr>
<td>26.1 Overview</td>
<td>1241</td>
</tr>
<tr>
<td>26.2 Schwarzschild's Spacetime Geometry</td>
<td>1242</td>
</tr>
<tr>
<td>26.2.1 The Schwarzschild Metric, Its Connection Coefficients, and Its</td>
<td>1242</td>
</tr>
<tr>
<td>26.4 Bibliographic Note</td>
<td>1190</td>
</tr>
</tbody>
</table>

25 Fundamental Concepts of General Relativity

25.1 History and Overview
25.2 Local Lorentz Frames, the Principle of Relativity, and Einstein's Equivalence Principle
25.3 The Spacetime Metric, and Gravity as a Curvature of Spacetime
25.4 Free-Fall Motion and Geodesics of Spacetime
25.5 Relative Acceleration, Tidal Gravity, and Spacetime Curvature
25.6 Properties of the Riemann Curvature Tensor
25.7 Delicacies in the Equivalence Principle, and Some Nongravitational Laws of Physics in Curved Spacetime
25.8 The Einstein Field Equation
25.9 Weak Gravitational Fields
25.9.1 Newtonian Limit of General Relativity
25.9.2 Linearized Theory
25.9.3 Gravitational Field outside a Stationary, Linearized Source of Gravity
25.9.4 Conservation Laws for Mass, Momentum, and Angular Momentum in Linearized Theory
25.9.5 Conservation Laws for a Strong-Gravity Source

26 Relativistic Stars and Black Holes

26.1 Overview
26.2 Schwarzschild's Spacetime Geometry
26.2.1 The Schwarzschild Metric, Its Connection Coefficients, and Its Curvature Tensors
26.2.2 The Nature of Schwarzschild’s Coordinate System, and Symmetries of the Schwarzschild Spacetime 1244
26.2.3 Schwarzschild Spacetime at Radii \(r \gg M \): The Asymptotically Flat Region 1245
26.2.4 Schwarzschild Spacetime at \(r \sim M \) 1248

26.3 Static Stars 1250
26.3.1 Birkhoff’s Theorem 1250
26.3.2 Stellar Interior 1252
26.3.3 Local Conservation of Energy and Momentum 1255
26.3.4 The Einstein Field Equation 1257
26.3.5 Stellar Models and Their Properties 1259
26.3.6 Embedding Diagrams 1261

26.4 Gravitational Implosion of a Star to Form a Black Hole 1264
26.4.1 The Implosion Analyzed in Schwarzschild Coordinates 1264
26.4.2 Tidal Forces at the Gravitational Radius 1266
26.4.3 Stellar Implosion in Eddington-Finkelstein Coordinates 1267
26.4.4 Tidal Forces at \(r = 0 \)—The Central Singularity 1271
26.4.5 Schwarzschild Black Hole 1272

26.5 Spinning Black Holes: The Kerr Spacetime 1277
26.5.1 The Kerr Metric for a Spinning Black Hole 1277
26.5.2 Dragging of Inertial Frames 1279
26.5.3 The Light-Cone Structure, and the Horizon 1279
26.5.4 Evolution of Black Holes—Rotational Energy and Its Extraction 1282

26.6 The Many-Fingered Nature of Time 1293

Bibliographic Note 1297

27 Gravitational Waves and Experimental Tests of General Relativity 1299
27.1 Overview 1299
27.2 Experimental Tests of General Relativity 1300
27.2.1 Equivalence Principle, Gravitational Redshift, and Global Positioning System 1300
27.2.2 Perihelion Advance of Mercury 1302
27.2.3 Gravitational Deflection of Light, Fermat’s Principle, and Gravitational Lenses 1305
27.2.4 Shapiro Time Delay 1308
27.2.5 Geodetic and Lense-Thirring Precession 1309
27.2.6 Gravitational Radiation Reaction 1310
27.3 Gravitational Waves Propagating through Flat Spacetime 1311
27.3.1 Weak, Plane Waves in Linearized Theory 1311
27.3.2 Measuring a Gravitational Wave by Its Tidal Forces 1315
27.3.3 Gravitons and Their Spin and Rest Mass 1319
27.4 Gravitational Waves Propagating through Curved Spacetime 1320
 27.4.1 Gravitational Wave Equation in Curved Spacetime 1321
 27.4.2 Geometric-Optics Propagation of Gravitational Waves 1322
 27.4.3 Energy and Momentum in Gravitational Waves 1324

27.5 The Generation of Gravitational Waves 1327
 27.5.1 Multipole-Moment Expansion 1328
 27.5.2 Quadrupole-Moment Formalism 1330
 27.5.3 Quadrupolar Wave Strength, Energy, Angular Momentum, and Radiation
 Reaction 1332
 27.5.4 Gravitational Waves from a Binary Star System 1335
 27.5.5 Gravitational Waves from Binaries Made of Black Holes, Neutron Stars,
 or Both: Numerical Relativity 1341

27.6 The Detection of Gravitational Waves 1345
 27.6.1 Frequency Bands and Detection Techniques 1345
 27.6.2 Gravitational-Wave Interferometers: Overview and Elementary
 Treatment 1347
 27.6.3 Interferometer Analyzed in TT Gauge 1349
 27.6.4 Interferometer Analyzed in the Proper Reference Frame of the
 Beam Splitter 1352
 27.6.5 Realistic Interferometers 1355
 27.6.6 Pulsar Timing Arrays 1355

Bibliographic Note 1358

28 Cosmology 1361

28.1 Overview 1361

28.2 General Relativistic Cosmology 1364
 28.2.1 Isotropy and Homogeneity 1364
 28.2.2 Geometry 1366
 28.2.3 Kinematics 1373
 28.2.4 Dynamics 1376

28.3 The Universe Today 1379
 28.3.1 Baryons 1379
 28.3.2 Dark Matter 1380
 28.3.3 Photons 1381
 28.3.4 Neutrinos 1382
 28.3.5 Cosmological Constant 1382
 28.3.6 Standard Cosmology 1383

28.4 Seven Ages of the Universe 1383
 28.4.1 Particle Age 1384
 28.4.2 Nuclear Age 1387
 28.4.3 Photon Age 1392