Numerical Linear Algebra with Applications
Using MATLAB

By

William Ford
Department of Computer Science
University of the Pacific
Contents

List of Figures xiii
List of Algorithms xvii
Preface xix

1. Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Matrix Arithmetic</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Matrix Product</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>The Trace</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3</td>
<td>MATLAB Examples</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Linear Transformations</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Rotations</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Powers of Matrices</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Nonsingular Matrices</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>The Matrix Transpose and Symmetric Matrices</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Chapter Summary</td>
<td>18</td>
</tr>
<tr>
<td>1.7</td>
<td>Problems</td>
<td>19</td>
</tr>
<tr>
<td>1.7.1</td>
<td>MATLAB Problems</td>
<td>22</td>
</tr>
</tbody>
</table>

2. Linear Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction to Linear Equations</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Solving Square Linear Systems</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Gaussian Elimination</td>
<td>28</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Upper-Triangular Form</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Systematic Solution of Linear Systems</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Computing the Inverse</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Homogeneous Systems</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Application: A Truss</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Application: Electrical Circuit</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Chapter Summary</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Problems</td>
<td>42</td>
</tr>
<tr>
<td>2.10.1</td>
<td>MATLAB Problems</td>
<td>43</td>
</tr>
</tbody>
</table>

3. Subspaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Subspaces of \mathbb{R}^n</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Linear Independence</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Basis of a Subspace</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>The Rank of a Matrix</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Chapter Summary</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Problems</td>
<td>56</td>
</tr>
<tr>
<td>3.7.1</td>
<td>MATLAB Problems</td>
<td>57</td>
</tr>
</tbody>
</table>

4. Determinants

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Developing the Determinant of a 2×2 and a 3×3 Matrix</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Expansion by Minors</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Computing a Determinant Using Row Operations</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Application: Encryption</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Chapter Summary</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Problems</td>
<td>74</td>
</tr>
<tr>
<td>4.6.1</td>
<td>MATLAB Problems</td>
<td>76</td>
</tr>
</tbody>
</table>

5. Eigenvalues and Eigenvectors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Definitions and Examples</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Selected Properties of Eigenvalues and Eigenvectors</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Diagonalization</td>
<td>84</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Powers of Matrices</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Applications</td>
<td>89</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Electric Circuit</td>
<td>89</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Irreducible Matrices</td>
<td>91</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Ranking of Teams Using Eigenvectors</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Computing Eigenvalues and Eigenvectors using MATLAB</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>Chapter Summary</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Problems</td>
<td>97</td>
</tr>
<tr>
<td>5.7.1</td>
<td>MATLAB Problems</td>
<td>99</td>
</tr>
</tbody>
</table>

6. Orthogonal Vectors and Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>The Inner Product</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Orthogonal Matrices</td>
<td>107</td>
</tr>
<tr>
<td>6.4</td>
<td>Symmetric Matrices and Orthogonality</td>
<td>109</td>
</tr>
<tr>
<td>6.5</td>
<td>The L^2 Inner Product</td>
<td>110</td>
</tr>
<tr>
<td>6.6</td>
<td>The Cauchy-Schwarz Inequality</td>
<td>111</td>
</tr>
<tr>
<td>6.7</td>
<td>Signal Comparison</td>
<td>112</td>
</tr>
<tr>
<td>6.8</td>
<td>Chapter Summary</td>
<td>113</td>
</tr>
<tr>
<td>6.9</td>
<td>Problems</td>
<td>114</td>
</tr>
<tr>
<td>6.9.1</td>
<td>MATLAB Problems</td>
<td>116</td>
</tr>
</tbody>
</table>
7. Vector and Matrix Norms

7.1. Vector Norms
- Properties of the 2-Norm
- Spherical Coordinates

7.2. Matrix Norms
- The Frobenius Matrix Norm
- Induced Matrix Norms

7.3. Submultiplicative Matrix Norms

7.4. Computing the Matrix 2-Norm

7.5. Properties of the Matrix 2-Norm

7.6. Chapter Summary

7.7. Problems
- 7.7.1. MATLAB Problems

8. Floating Point Arithmetic

8.1. Integer Representation

8.2. Floating-Point Representation
- Mapping from Real Numbers to Floating-Point Numbers

8.3. Floating-Point Arithmetic
- Relative Error
- Rounding Error Bounds

8.4. Minimizing Errors
- Avoid Adding a Huge Number to a Small Number
- Avoid Subtracting Numbers That Are Close

8.5. Chapter Summary

8.6. Problems
- 8.6.1. MATLAB Problems

9. Algorithms

9.1. Pseudocode Examples
- Inner Product of Two Vectors
- Computing the Frobenius Norm
- Matrix Multiplication
- Block Matrices

9.2. Algorithm Efficiency
- Smaller Flop Count Is Not Always Better
- Measuring Truncation Error

9.3. The Solution to Upper and Lower Triangular Systems

9.4. The Thomas Algorithm

9.5. Chapter Summary

9.6. Problems
- 9.6.1. MATLAB Problems

10. Conditioning of Problems and Stability of Algorithms

10.1. Why Do We Need Numerical Linear Algebra?

10.2. Computation Error
- Forward Error
- Backward Error

10.3. Algorithm Stability
- Examples of Unstable Algorithms

10.4. Conditioning of a Problem

10.5. Perturbation Analysis for Solving a Linear System

10.6. Properties of the Matrix Condition Number

10.7. MATLAB Computation of a Matrix Condition Number

10.8. Estimating the Condition Number

10.9. Introduction to Perturbation Analysis of Eigenvalue Problems

10.10. Chapter Summary

10.11. Problems
- 10.11.1. MATLAB Problems

11. Gaussian Elimination and the LU Decomposition

11.1. LU Decomposition

11.2. Using LU to Solve Equations

11.3. Elementary Row Matrices

11.4. Derivation of the LU Decomposition
- Colon Notation
- The LU Decomposition Algorithm
- LU Decomposition Flop Count

11.5. Gaussian Elimination with Partial Pivoting
- Derivation of PA=LU
- Algorithm for Gaussian Elimination with Partial Pivoting

11.6. Using the LU Decomposition to Solve $Ax = b$, $1 \leq i \leq k$

11.7. Finding A^{-1}

11.8. Stability and Efficiency of Gaussian Elimination

11.9. Iterative Refinement

11.10. Chapter Summary

11.11. Problems
- 11.11.1. MATLAB Problems
12. Linear System Applications 241
12.1. Fourier Series 241
 12.1.1. The Square Wave 243
12.2. Finite Difference Approximations 244
 12.2.1. Steady-State Heat and Diffusion 245
12.3. Least-Squares Polynomial Fitting 247
 12.3.1. Normal Equations 249
12.4. Cubic Spline Interpolation 252
12.5. Chapter Summary 256
12.6. Problems 257
 12.6.1. MATLAB Problems 260

13. Important Special Systems 263
13.1. Tridiagonal Systems 263
13.2. Symmetric Positive Definite Matrices 267
 13.2.1. Applications 269
13.3. The Cholesky Decomposition 269
 13.3.1. Computing the Cholesky Decomposition 270
 13.3.2. Efficiency 272
 13.3.3. Solving $Ax = b$ If A Is Positive Definite 272
 13.3.4. Stability 273
13.4. Chapter Summary 273
13.5. Problems 274
 13.5.1. MATLAB Problems 277

14. Gram-Schmidt Orthonormalization 281
14.1. The Gram-Schmidt Process 281
14.3. The QR Decomposition 287
 14.3.1. Efficiency 289
 14.3.2. Stability 290
14.4. Applications of the QR Decomposition 290
 14.4.1. Computing the Determinant 291
 14.4.2. Finding an Orthonormal Basis for the Range of a Matrix 291
14.5. Chapter Summary 292
14.6. Problems 292
 14.6.1. MATLAB Problems 293

15. The Singular Value Decomposition 299
15.1. The SVD Theorem 299
15.2. Using the SVD to Determine Properties of a Matrix 302
 15.2.1. The Four Fundamental Subspaces of a Matrix 304
15.3. SVD and Matrix Norms 306
15.4. Geometric Interpretation of the SVD 307
15.5. Computing the SVD Using MATLAB 308
15.6. Computing A^{-1} 309
15.7. Image Compression Using the SVD 310
 15.7.1. Image Compression Using MATLAB 311
 15.7.2. Additional Uses 313
15.8. Final Comments 314
15.9. Chapter Summary 314
15.10. Problems 316
 15.10.1. MATLAB Problems 317

16. Least-Squares Problems 321
16.1. Existence and Uniqueness of Least-Squares Solutions 322
 16.1.1. Existence and Uniqueness Theorem 322
 16.1.2. Normal Equations and Least-Squares Solutions 324
 16.1.3. The Pseudoinverse, $m \geq n$ 324
 16.1.4. The Pseudoinverse, $m<n$ 325
16.2. Solving Overdetermined Least-Squares Problems 325
 16.2.1. Using the Normal Equations 326
 16.2.2. Using the QR Decomposition 327
 16.2.3. Using the SVD 329
 16.2.4. Remark on Curve Fitting 332
16.3. Conditioning of Least-Squares Problems 332
 16.3.1. Sensitivity when using the Normal Equations 333
16.4. Rank-Deficient Least-Squares Problems 333
 16.4.1. Efficiency 338
16.5. Underdetermined Linear Systems 338
 16.5.1. Efficiency 341
16.6. Chapter Summary 341
16.7. Problems 342
 16.7.1. MATLAB Problems 343

17. Implementing the QR Decomposition 351
17.1. Review of the QR Decomposition Using Gram-Schmidt 351
17.2. Givens Rotations 352
 17.2.1. Zeroing a Particular Entry in a Vector 353
17.3. Creating a Sequence of Zeros in a Vector Using Givens Rotations 355
17.4. Product of a Givens Matrix with a General Matrix 356
17.5. Zeroing-Out Column Entries in a Matrix Using Givens Rotations 357
17.6. Accurate Computation of the Givens Parameters 358
22. Large Sparse Eigenvalue Problems

22.1. The Power Method

22.2. Eigenvalue Computation Using the Arnoldi Process

22.3. The Implicitly Restarted Arnoldi Method

22.4. Eigenvalue Computation Using the Lanczos Process

23. Computing the Singular Value Decomposition

A. Complex Numbers

B. Mathematical Induction

C. Chebyshev Polynomials