Flow, Deformation and Fracture
Lectures on Fluid Mechanics and the Mechanics of Deformable Solids for Mathematicians and Physicists

GRIGORY ISAAKOVICH BARENBLATT, ForMemRS
Emeritus G. I. Taylor Professor of Fluid Mechanics,
University of Cambridge
Emeritus Professor, University of California, Berkeley
Principal Scientist, Institute of Oceanology,
Russian Academy of Sciences
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Idealized continuous media: the basic concepts</td>
<td></td>
</tr>
<tr>
<td>1.1 The idealized model of a continuous medium</td>
<td>10</td>
</tr>
<tr>
<td>1.2 Properties of a continuum and its motion. Density, flux and velocity. Law of mass balance</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Law of momentum balance. Stress tensor</td>
<td>24</td>
</tr>
<tr>
<td>2 Dimensional analysis and physical similitude</td>
<td></td>
</tr>
<tr>
<td>2.1 Examples</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Dimensional analysis</td>
<td>37</td>
</tr>
<tr>
<td>2.3 Physical similitude</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Examples. Classical parameters of similitude</td>
<td>43</td>
</tr>
<tr>
<td>3 The ideal incompressible fluid approximation: general concepts and relations</td>
<td>48</td>
</tr>
<tr>
<td>3.1 The fundamental idealization (model). Euler equations</td>
<td>48</td>
</tr>
<tr>
<td>3.2 Decomposition of the velocity field in the vicinity of an arbitrary point. The vorticity. The strain-rate tensor</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Irrotational motions. Lagrange’s theorem. Potential flows</td>
<td>53</td>
</tr>
<tr>
<td>3.4 Lagrange–Cauchy integral. Bernoulli integral</td>
<td>56</td>
</tr>
<tr>
<td>3.5 Plane potential motions of an ideal incompressible fluid</td>
<td>58</td>
</tr>
<tr>
<td>4 The ideal incompressible fluid approximation: analysis and applications</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Physical meaning of the velocity potential. The Lavrentiev problem of a directed explosion</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Lift force on a wing</td>
<td>66</td>
</tr>
</tbody>
</table>
Contents

5 The linear elastic solid approximation. Basic equations and boundary value problems in the linear theory of elasticity

- 5.1 The fundamental idealization 79
- 5.2 Basic equations and boundary conditions of the linear theory of elasticity 86
- 5.3 Plane problem in the theory of elasticity 89
- 5.4 Analytical solutions of some special problems in plane elasticity 95

6 The linear elastic solid approximation. Applications: brittle and quasi-brittle fracture; strength of structures

- 6.1 The problem of structural integrity 101
- 6.2 Defects and cracks 102
- 6.3 Cohesion crack model 109
- 6.4 What is fracture from the mathematical viewpoint? 113
- 6.5 Time effects; lifetime of a structure; fatigue 119

7 The Newtonian viscous fluid approximation. General comments and basic relations

- 7.1 The fundamental idealization. The Navier–Stokes equations 124
- 7.2 Angular momentum conservation law 128
- 7.3 Boundary value and initial value problems for the Newtonian viscous incompressible fluid approximation. Smoothness of the solutions 129
- 7.4 The viscous dissipation of mechanical energy into heat 135

8 The Newtonian viscous fluid approximation. Applications: the boundary layer

- 8.1 The drag on a moving wing. Friedrichs’ example 137
- 8.2 Model of the boundary layer at a thin weakly inclined wing of infinite span 140
- 8.3 The boundary layer on a flat plate 143

9 Advanced similarity methods: complete and incomplete similarity

- 9.1 Examples 150
- 9.2 Complete and incomplete similarity 153
- 9.3 Self-similar solutions of the first and second kind 157
- 9.4 Incomplete similarity in fatigue experiments (Paris’ law) 158
- 9.5 A note concerning scaling laws in nanomechanics 161
10 The ideal gas approximation. Sound waves; shock waves 164
10.1 Sound waves 164
10.2 Energy equation. The basic equations of the ideal gas model 167
10.3 Simple waves. The formation of shock waves 168
10.4 An intense explosion at a plane interface: the external intermediate asymptotics 171
10.5 An intense explosion at a plane interface: the internal intermediate asymptotics 173

11 Turbulence: generalities; scaling laws for shear flows 182
11.1 Kolmogorov’s example 185
11.2 The Reynolds equation. Reynolds stress 187
11.3 Turbulent shear flow 189
11.4 Scaling laws for turbulent flows at very large Reynolds numbers. Flow in pipes 190
11.5 Turbulent flow in pipes at very large Reynolds numbers: advanced similarity analysis 195
11.6 Reynolds-number dependence of the drag in pipes following from the power law 201
11.7 Further comparison of the Reynolds-number-dependent scaling law and the universal logarithmic law 204
11.8 Modification of the Izakson–Millikan–von Mises analysis of the flow in the intermediate region 208
11.9 Further comparison of scaling laws with experimental data 211
11.10 Scaling laws for turbulent boundary layers 219

12 Turbulence: mathematical models of turbulent shear flows and of the local structure of turbulent flows at very large Reynolds numbers 225
12.1 Basic equations for wall-bounded turbulent shear flows. Wall region 225
12.2 Kolmogorov–Prandtl semi-empirical model for the wall region of a shear flow 227
12.3 A model for drag reduction by polymeric additives 230
12.4 The local structure of turbulent flows at very large Reynolds numbers 234

Bibliography and References 243
Index 253