Heat Conversion into Power Using Small Scale Organic Rankine Cycles
Design, Optimization and Economic Evaluation
Table of Contents

ACKNOWLEDGEMENTS...3

TABLE OF CONTENTS..5

NOMENCLATURE ..9

1 - GENERAL INTRODUCTION..15

1.1 BACKGROUND..15

1.2 STRUCTURE AND SCOPE OF THE THESIS...........................16

2 - RANKINE POWER CYCLES...19

2.1 INTRODUCTION..19

2.2 HEAT ENGINE DEFINITION..19

2.3 IDEAL CARNOT CYCLE..20

2.4 REAL POWER CYCLES...23

2.4.1 Rankine cycle ...23

2.4.2 Trilateral flash cycle...26

2.4.3 Brayton cycle...27

2.4.3 Otto and Diesel cycles..32

2.5 ADVANCED RANKINE CYCLES...34

2.5.1 Superheated Rankine cycles..34

2.5.2 Transcritical and supercritical Rankine cycles35

2.5.3 Regenerative Rankine cycles..37

2.5.4 Innovative absorption power cycles.................................41

2.5.5 Rankine combined cycles...48

2.6 CONCLUSION..49

3 - ORGANIC RANKINE CYCLE APPLICATIONS.........................51

3.1 INTRODUCTION..51

3.2 ORC APPLICATIONS...54

3.2.1 Binary geothermal power plants54
3.2.2 Solar thermal power systems ... 58
3.2.3 Solar ORC-RO desalination systems 67
3.2.4 Duplex-Rankine cooling system .. 72
3.2.5 Ocean Thermal Energy Conversion Systems 76
3.2.6 Organic Rankine Cycle in waste heat recovery application 81
3.2.7 ORC biomass power plants .. 84
3.3 COST AND APPLICATIONS COMPARISON 87
3.4 CONCLUSION .. 89

4 - FLUID SELECTION FOR A LOW-TEMPERATURE SOLAR
ORGANIC RANKINE CYCLE .. 93

4.1 INTRODUCTION .. 93
4.2 WORKING FLUIDS FOR RANKINE CYCLES 93
4.3 CRITERIA AND METHODOLOGY FOR FLUID SELECTION 97
 4.3.1 Overview of selection criteria .. 97
 4.3.2 Methodology ... 108
4.4 CASE STUDY: A LOW-TEMPERATURE SOLAR ORGANIC RANKINE CYCLE ... 110
 4.4.1 System description and modeling 110
 4.4.2 Results and discussion .. 117
4.5 CONCLUSIONS .. 133

5 - EXERGY ANALYSIS OF MICRO-ORGANIC RANKINE
POWER CYCLES .. 137

5.1 INTRODUCTION .. 137
5.2 EXERGY ANALYSIS ... 137
5.3 SYSTEMS ANALYSIS ... 140
 5.3.1 Rankine engines ... 140
 5.3.2 Modelling ... 144
 5.3.3 Operating conditions .. 149
5.4 RESULTS AND DISCUSSION .. 150
5.4.1 Rankine engines with R134a as working fluid 159
5.4.2 Rankine engines and working fluids ... 162
5.4.3 Heat source temperature and pinch point temperature difference
.. 165
5.4.4 Case study of a micro-solar organic Rankine cycle 167
5.5 CONCLUSION ... 174

6 - EXPERIMENTAL INVESTIGATION OF A SMALL ORGANIC
RANKINE CYCLE IN HEAT RECOVERY APPLICATION 177

6.1 INTRODUCTION .. 177
6.2 POTENTIAL FLUIDS .. 177
6.3 DESCRIPTION OF THE TEST BENCH .. 180
 6.3.1 The bench diagram ... 180
 6.3.2 Components ... 180
 6.3.3 The instruments .. 187
6.4. DESCRIPTION OF THE TESTS ... 189
6.5. EXPERIMENTAL RESULTS AND DISCUSSION 190
 6.5.1 Energy conservation ... 190
 6.5.2 Exergy analysis ... 204
6.6. FLUIDS PERFORMANCE COMPARISON 212
6.7. CONCLUSION .. 214

7 - ECONOMIC EVALUATION AND OPTIMIZATION OF SMALL
SCALE ORGANIC RANKINE CYCLES IN HEAT RECOVERY
APPLICATION .. 217

7.1 INTRODUCTION .. 217
7.2 ORC IN HEAT RECOVERY APPLICATION 218
7.3 FLUID CANDIDATES ... 219
7.4 MODELING OF A SMALL ORC .. 220
 7.4.1 The scroll expander model .. 220
 7.4.2 The heat exchanger model .. 222