OFDMA Mobile Broadband Communications
A Systems Approach

JUNYI LI
Qualcomm

XINZHOU WU
Qualcomm

RAJIV LAROIA
Sonus Networks

CAMBRIDGE UNIVERSITY PRESS
Contents

Foreword xiii
Preface xiv
List of Notation xvii
List of Abbreviations xix

1 Introduction 1
 1.1 Evolution towards mobile broadband communications 1
 1.2 System design principles of wireless communications 3
 1.3 Why OFDMA for mobile broadband? ... 4
 1.4 Systems approach and outline of the book 6

2 Elements of OFDMA 9
 2.1 OFDM 9
 2.1.1 Tone signals .. 9
 2.1.2 Cyclic prefix 10
 2.1.3 Time-frequency resource 13
 2.1.4 Block signal processing 14
 Discussion notes 2.1 FFT/IFFT 15
 Discussion notes 2.2 Filtering 16
 Discussion notes 2.3 Equalization 17
 2.2 From OFDM to OFDMA .. 18
 2.2.1 Basic principles .. 18
 2.2.2 Comparison: OFDMA, CDMA, and FDMA 21
 2.2.3 Inter-cell interference averaging: OFDMA versus CDMA 21
 2.2.4 Tone hopping: averaging versus peaking 24
 Practical example 2.1 Physical resource block allocation and hopping 26
 in LTE data channels .. 26
 2.2.5 Time-frequency synchronization and control 30
 2.2.6 Block signal processing .. 33
 Discussion notes 2.4 Block front-end processing at the base station 34
 Discussion notes 2.5 Wideband processing at the user 34
 2.3 Peak-to-average power ratio and SC-FDMA 34
 2.3.1 PAPR problem .. 34
2.3.2 PAPR of OFDMA 35
2.3.3 SC-FDMA and PAPR reduction 35
2.3.4 Frequency domain equalization at the SC-FDMA receiver 40
Discussion notes 2.6 SINR degradation in SC-FDMA 42
2.3.5 System aspects of SC-FDMA 45
Practical example 2.2 Uplink data and control channels in LTE 46

2.4 Real-world impairments 52
2.4.1 Carrier frequency offset and Doppler effect 52
2.4.2 Arrival time beyond the cyclic prefix 55
2.4.3 Sampling rate mismatch 56
2.4.4 I/Q imbalance 60
2.4.5 Power amplifier nonlinear distortion 61
Discussion notes 2.7 Determination of OFDMA parameters 61

2.5 Cross interference and self-noise models 63
2.5.1 Cross interference and self-noise due to ICI 63

2.6 Self-noise due to imperfect channel estimation 64
2.6.1 Self-noise measurement via null pilot 67

2.7 Summary of key ideas 68

3 System design principles 70

3.1 System benefits of OFDMA 70
3.2 Fading channel mitigation and exploitation 74
3.2.1 Fading mitigation 75
3.2.2 Fading exploitation 75
3.2.3 Mitigation or exploitation? 77

3.3 Intra-cell user multiplexing 77

3.4 Inter-cell interference management 80
3.4.1 Interference averaging and active control 81
3.4.2 Universal versus fractional frequency reuse 82

3.5 Multiple antenna techniques 84
3.5.1 System benefits 84
3.5.2 OFDMA advantages 86

3.6 Scheduling 87

3.7 Network architecture and airlink support 89
3.7.1 Unplanned deployment of base stations 90
3.7.2 Mobile IP-based handoff 91

3.8 Summary of key ideas: evolution of system design principles 92

4 Mitigation and exploitation of multipath fading 94

4.1 Multipath fading channel 97
4.1.1 Impulse response model 97
4.1.2 Amplitude statistics 99
4.1.3 Channel variation in time 100
4.1.4 Channel variation in frequency 103
4.1.5 Gaussian-Markov model 105
4.2 Communications over a fading channel: the single-user case 106
 4.2.1 Performance penalty due to multipath fading 106
 4.2.2 Mitigation of fading via channel state feedback 108
Discussion notes 4.1 Practical consideration of feedback-based approaches 112
 4.2.3 Mitigation of fading via diversity 115
Discussion notes 4.2 Tradeoff considerations for achieving diversity 122
 4.2.4 Feedback or diversity 123
4.3 Communications over a fading channel: the multiuser case 126
 4.3.1 Fading channel and multiuser diversity 126
Practical example 4.1 Multiuser diversity in the downlink: EV-DO 130
Practical example 4.2 Multiuser diversity in the uplink: Flash-OFDM and LTE 133
 4.3.2 Exploring multiuser diversity in frequency and space 135
 4.3.3 Multiuser or single-user diversity 144
4.4 Summary of key ideas 148

5 Intra-cell user multiplexing 150
5.1 Orthogonal multiplexing 151
 5.1.1 Orthogonal multiplexing in the perfect model 151
Discussion notes 5.1 An analysis of optimal power and bandwidth allocation in a cellular downlink 157
Practical example 5.1 Downlink user multiplexing: EV-DO, HSDPA, and LTE 160
 5.1.2 Orthogonal multiplexing in the cross interference model 167
Discussion notes 5.2 An analysis of optimal power and bandwidth allocation for orthogonal uplink multiplexing with cross interference in the power limited regime 169
 5.1.3 Orthogonal multiplexing in the self-noise model 172
5.2 Non-orthogonal multiplexing 174
 5.2.1 Non-orthogonal multiplexing in the perfect model 176
 5.2.2 Non-orthogonal multiplexing in the cross interference and self-noise models 180
 5.2.3 Superposition-by-position coding 183
5.3 Inter-sector interference management 189
 5.3.1 Sectorization 189
 5.3.2 Synchronized sectors 190
 5.3.3 Users at sector edge 192
5.4 Summary of key ideas 195
6 Inter-cell interference management

6.1 Analysis of SIR distributions
6.1.1 Downlink SIR
Discussion notes 6.1 An analysis of C/I distribution with randomly-placed base stations
6.1.2 Uplink SIR
6.2 Uplink power control and SINR assignment in OFDMA
6.2.1 SINR feasibility region
6.2.2 Distributed power control
6.2.3 SINR assignment
6.2.4 Joint bandwidth and SINR assignment
6.2.5 Utility maximization in SINR assignment
Practical example 6.1 Uplink power control in LTE
6.3 Fractional frequency reuse
6.3.1 A two-cell analysis
Discussion notes 6.2 Motivation of fractional frequency reuse from a different angle
6.3.2 Static FFR in a multi-cell scenario
6.3.3 Breathing cells: FFR in the time domain
6.3.4 Adaptive FFR
Practical example 6.2 Inter-cell interference coordination in LTE
6.4 Summary of key ideas

7 Use of multiple antennas

7.1 MIMO channel modeling
7.1.1 Linear antenna arrays
7.1.2 Polarized antennas
7.2 SU-MIMO techniques
7.2.1 Channel state information at both transmitter and receiver
7.2.2 Channel state information only at receiver
7.2.3 Multiplexing with polarized antennas
7.3 Multiuser MIMO techniques
7.3.1 Uplink SDMA
7.3.2 Downlink beamforming
7.4 Multi-cell MIMO techniques
7.4.1 Coordinated beamforming
7.4.2 Inter-sector beamforming
7.4.3 Inter-cell interference avoidance with polarized antennas
Practical example 7.1 Multiple antenna techniques in LTE
7.5 Summary of key ideas

8 Scheduling

8.1 Scheduling for infinitely backlogged traffic
8.1.1 Fairness based on utility functions 283
8.1.2 Gradient-based scheduling schemes 286

8.2 Scheduling for elastic traffic 289
8.2.1 Congestion control and scheduling 290
Discussion notes 8.1 TCP performance over wireless 292

8.3 Scheduling for inelastic traffic 293
8.3.1 Throughput optimal scheduling 294
8.3.2 Tradeoff between queue-awareness and channel-awareness 296
8.3.3 Admission control 299

8.4 Multi-class scheduling 300
8.5 Flow level scheduling 301
8.6 Signaling for scheduling 304
8.6.1 Dynamic packet scheduling 304
Practical example 8.1 Signaling for scheduling in LTE 307
8.6.2 Semi-persistent scheduling 310
Practical example 8.2 Semi-persistent scheduling in LTE for VoIP 311
8.6.3 MAC state scheduling 311
Practical example 8.3 LTE DRX mode and Flash-OFDM HOLD state 312

8.7 Summary of key ideas 313

9 Handoff in IP-based network architecture 315

9.1 IP-based cellular network architecture 317
9.1.1 Motivation for IP-based cellular network architecture 317
9.1.2 Description of IP-based cellular networks 317

9.2 Soft handoff in CDMA 319
9.3 Make-before-break handoff in OFDMA 323
9.3.1 Parallel independent links to multiple base stations 324
9.3.2 Mobile IP-based MBB handoff procedure 327
9.3.3 Uplink macro-diversity 328
9.3.4 Downlink macro-diversity 333
9.3.5 MBB handoff in an FFR or multi-carrier scenario 335

9.4 Break-before-make handoff in OFDMA 337
9.4.1 BBM handoff in an FFR or multi-carrier scenario 338
9.4.2 Expedited BBM handoff 339

9.5 Handoff initiation 342
9.5.1 The universal frequency reuse case 342
Practical example 9.1 Flash signaling in Flash-OFDM 351
Practical example 9.2 Handoff in a railway Flash-OFDM network 353
9.5.2 The non-universal frequency reuse cases 354

9.6 Mobile-controlled versus network-controlled handoff 356
Practical example 9.3 Cell search and random access in LTE handoff 357

9.7 Summary of key ideas 363
10 Beyond conventional cellular frameworks

10.1 Heterogeneous topology

10.1.1 Relays

10.1.2 Femtocells

10.1.3 Device-to-device communications

Discussion notes 10.1 Gaussian interference channel capacity

10.2 Cooperative communication

10.2.1 User cooperation

10.2.2 Network cooperation

10.3 Cognitive radio

10.3.1 Spectrum sensing

10.3.2 Spectrum sharing

Practical example 10.1 LTE-Advanced

Practical example 10.2 Cognitive radio RAN in TV white spaces (IEEE 802.22)

10.4 Summary of key ideas

A Overview of system operations

A.1 Cell search, synchronization, and identification

A.2 Link establishment

A.3 Traffic control and transmission

A.4 Sleep state

A.5 Handoff

B OFDM point-to-point communications

B.1 Signal-presence detection

B.2 Synchronization

B.3 Channel estimation

B.4 Error correction

C Brief review of channel capacity

C.1 AWGN channel

C.2 Flat fading channel

C.2.1 Channel side information only at receiver

C.2.2 Channel side information at both receiver and transmitter

C.3 Frequency selective fading channel

C.4 Multiuser capacity

References

Index