Introduction to Signals and Systems

1.1 Introduction
 - What Is a Signal?
 - What Is a System?

1.2 Introduction to Signal Manipulation
 - Linear Combination
 - Addition and Multiplication of Signals
 - Visualizing Signals—An Important Skill
 - Introduction to Signal Manipulation Using MATLAB
 - Defining Signals
 - Basic Plotting Commands
 - Multiple Plots on One Figure

1.3 A Few Useful Signals
 - The Unit Rectangle `rect(t)`
 - The Unit Step `u(t)`
 - Reflection about `t = 0`
 - The Exponential `e^{at}`
 - The Unit Impulse `δ(t)`
 - Sketching the Unit Impulse
 - The Sifting Property of `δ(t)`
 - Sampling Function

1.4 The Sinusoidal Signal
 - The One-Sided Cosine Graph
 - Phase Change—Φ

1.5 Phase Change vs. Time Shift
 - Sine vs. Cosine
 - Combining Signals: The Gated Sine Wave
 - Combining Signals: A Dial Tone Generator

1.6 Useful Hints and Help with MATLAB
 - Annotating Graphs

1.7 Conclusions

Classification of Signals

2.1 Introduction

2.2 Periodic Signals
 - Sinusoid
 - Half-Wave Rectified Sinusoid
 - Full-Wave Rectified Sinusoid
 - Square Wave
3.4.7 Convolution with MATLAB 84
MATLAB Exercise 1: Convolution of a Rectangle with Itself 84
MATLAB Exercise 2: Convolution of Two Rectangles 85
MATLAB Exercise 3: Convolution of a Rectangle with an Exponential Decay 86
3.5 Determining $h(t)$ in an Unknown System 88
3.5.1 The Unit Impulse $\delta(t)$ Test Signal 88
3.5.2 Convolution and Signal Decomposition 89
Convolution and Periodic Signals 90
3.5.3 An Ideal Distortionless System 90
Deconvolution 90
3.6 Causality 91
3.6.1 Causality and Zero Input Response 92
3.7 Combined Systems 92
MATLAB Exercise 4. Systems in Series 93
3.8 Convolution and Random Numbers 94
3.9 Useful Hints and Help with MATLAB 96
3.10 Chapter Summary 97
3.11 Conclusions 97
4 The Fourier Series 101
Chapter Overview 101
4.1 Introduction 101
4.2 Expressing Signals by Components 102
The Spectrum Analyzer 103
4.2.1 Approximating a Signal $s(t)$ by Another: The Signal Inner Product 104
4.2.2 Estimating One Signal by Another 105
4.3 Part One—Orthogonal Signals 106
4.4 Orthogonality 107
4.4.1 An Orthogonal Signal Space 107
Interpreting the Inner Product 109
4.4.2 The Signal Inner Product Formulation 109
4.4.3 Complete Set of Orthogonal Signals 110
4.4.4 What If a Complete Set Is Not Present? 111
4.4.5 An Orthogonal Set of Signals 111
Defining Orthogonal Basis Signals 111
Confirming Orthogonal Basis Signals 112
Finding Orthogonal Components 113
4.4.6 Orthogonal Signals and Linearly Independent Equations 115
MATLAB Exercise 1: Evaluating an Inner Product 117
4.5 Part Two—The Fourier Series 118
4.5.1 A Special Set of Orthogonal Functions 118
4.5.2 The Fourier Series—An Orthogonal Set? 119
4.6 Computing Fourier Series Components 121
4.6.1 Fourier Series Approximation to an Odd Square Wave 121
4.6.2 Zero-Frequency (DC) Component 122
4.7 Fundamental Frequency Component 123
4.7.1 Higher-Order Components 124
4.7.2 Frequency Spectrum of the Square Wave $s(t)$ 125
4.8 Practical Harmonics 126
4.8.1 The 60 Hz Power Line 126
4.8.2 Audio Amplifier Specs—Total Harmonic Distortion 127
4.8.3 The CB Radio Booster 127
4.9 Odd and Even Square Waves 128
4.9.1 The Fourier Series Components of an Even Square Wave 128
4.10 Gibb's Phenomenon 131
4.11 Setting Up the Fourier Series Calculation 132
4.11.1 Appearance of Pulse Train Frequency Components 134
4.11.2 Pulse Train with 10 Percent Duty Cycle 134
4.11.3 Pulse Train with 20 Percent Duty Cycle 134
4.11.4 Pulse Train with 50 Percent Duty Cycle (Square Wave) 136
4.12 Some Common Fourier Series 136
4.13 Part Three—The Complex Fourier Series 137
4.13.1 Not All Signals Are Even or Odd 137
4.14 The Complex Fourier Series 138
4.14.1 Complex Fourier Series—The Frequency Domain 139
4.14.2 Comparing the Real and Complex Fourier Series 142
4.14.3 Magnitude and Phase 142
4.15 Complex Fourier Series Components 143
4.15.1 Real Signals and the Complex Fourier Series 144
4.15.2 Stretching and Squeezing: Time vs. Frequency 144
4.15.3 Shift in Time 145
4.15.4 Change in Amplitude 146
4.15.5 Power in Periodic Signals 146
4.15.6 Parseval's Theorem for Periodic Signals 147
4.16 Properties of the Complex Fourier Series 151
4.17 Analysis of a DC Power Supply 152
4.17.1 The DC Component 152
4.17.2 An AC-DC Converter 153
4.17.3 V_{rms} Is Always Greater Than or Equal to V_{dc} 153
4.17.4 Fourier Series: The Full-Wave Rectifier 154
4.17.5 Complex Fourier Series Components C_n 155
MATLAB Exercise 2: Plotting Fourier Series Components 157
4.18 The Fourier Series with MATLAB 158
4.18.1 Essential Features of the fft() in MATLAB 158
1. Periodic Signals Are Defined on a Period of 2^N Points 158
2. The Fourier Series Is Defined on $2^{N-1} - 1$ Frequency Components 159
4.18.2 Full-Wave Rectified Cosine (60 Hz) 160
4.18.3 Useful Hints and Help with MATLAB 162
4.19 Conclusions 165

5 The Fourier Transform 171
5.1 Introduction 171
5.1.1 A Fresh Look at the Fourier Series 172
5.1.2 Approximating a Nonperiodic Signal over All Time 173
5.1.3 Definition of the Fourier Transform 176
5.1.4 Existence of the Fourier Transform 177
5.1.5 The Inverse Fourier Transform 177
5.2 Properties of the Fourier Transform 178
 5.2.1 Linearity of the Fourier Transform 178
 5.2.2 Value of the Fourier Transform at the Origin 179
 5.2.3 Odd and Even Functions and the Fourier Transform 180
5.3 The Rectangle Signal 181
 Alternate Solution 182
5.4 The Sinc Function 182
 5.4.1 Expressing a Function in Terms of sinc(t) 184
 5.4.2 The Fourier Transform of a General Rectangle 185
 5.4.3 Magnitude of the Fourier Transform 188
5.5 Signal Manipulations: Time and Frequency 189
 5.5.1 Amplitude Variations 189
 5.5.2 Stretch and Squeeze: The Sinc Function 189
 5.5.3 The Scaling Theorem 190
 5.5.4 Testing the Limits 191
 5.5.5 A Shift in Time 192
 5.5.6 The Shifting Theorem 193
 5.5.7 The Fourier Transform of a Shifted Rectangle 194
 Magnitude of $G(f)$ 194
 Phase of $G(f)$ 195
 5.5.8 Impulse Series—The Line Spectrum 196
 5.5.9 Shifted Impulse $\delta(f-f_0)$ 197
 5.5.10 Fourier Transform of a Periodic Signal 197
5.6 Fourier Transform Pairs 198
 5.6.1 The Illustrated Fourier Transform 200
5.7 Rapid Changes vs. High Frequencies 200
 5.7.1 Derivative Theorem 201
 5.7.2 Integration Theorem 202
5.8 Conclusions 203

6 Practical Fourier Transforms 206
6.1 Introduction 206
6.2 Convolution: Time and Frequency 206
 The Logarithm Domain 207
 6.2.1 Simplifying the Convolution Integral 207
6.3 Transfer Function of a Linear System 210
 6.3.1 Impulse Response: The Frequency Domain 211
 6.3.2 Frequency Response Curve 212
6.4 Energy in Signals: Parseval’s Theorem for the Fourier Transform 213
 6.4.1 Energy Spectral Density 214
6.5 Data Smoothing and the Frequency Domain 215
6.6 Ideal Filters 216
 6.6.1 The Ideal Lowpass Filter Is Not Causal 219
6.7 A Real Lowpass Filter 220
 MATLAB Example 1: First-Order Filter 223
6.8 The Modulation Theorem 224
 6.8.1 A Voice Privacy System 226
 Spectral Inversion 227
6.9 Periodic Signals and the Fourier Transform
 6.9.1 The Impulse Train
 6.9.2 General Appearance of Periodic Signals
 6.9.3 The Fourier Transform of a Square Wave
 Changing the Pulse Train Appearance
 6.9.4 Other Periodic Waveforms
6.10 The Analog Spectrum Analyzer
6.11 Conclusions

7 The Laplace Transform
7.1 Introduction
7.2 The Laplace Transform
 7.2.1 The Frequency Term e^{bt}
 7.2.2 The Exponential Term e^{at}
 7.2.3 The s-Domain
7.3 Exploring the s-Domain
 7.3.1 A Pole at the Origin
 Graphing the Function $H(s) = 1/s$
 7.3.2 Decaying Exponential
 7.3.3 A Sinusoid
 The Generalized Cosine: $A = \cos(\omega t + \Phi)$
 7.3.4 A Decaying Sinusoid
 7.3.5 An Unstable System
7.4 Visualizing the Laplace Transform
 7.4.1 First-Order Lowpass Filter
 7.4.2 Pole Position Determines Frequency Response
 7.4.3 Second-Order Lowpass Filter
 Resonance Frequency
 Multiple Poles and Zeros
 7.4.4 Two-Sided Laplace Transform
 7.4.5 The Bode Plot
 Bode Plot—Multiple Poles and Zeros
 Laplace Transform Exercise 1: Calculating
 the Laplace Transform
 7.4.6 System Analysis in MATLAB
7.5 Properties of the Laplace Transform
7.6 Differential Equations
 7.6.1 Solving a Differential Equation
 Compound Interest
 7.6.2 Transfer Function as Differential Equations
7.7 Laplace Transform Pairs
 7.7.1 The Illustrated Laplace Transform
7.8 Circuit Analysis with the Laplace Transform
 7.8.1 Voltage Divider
 7.8.2 A First-Order Lowpass Filter
 7.8.3 A First-Order Highpass Filter
 7.8.4 A Second-Order Filter
 Lowpass Filter
 Bandpass Filter
 Highpass Filter
 Analysis of a Second-Order System
 Series RLC Circuit Analysis
7.9 State Variable Analysis
 7.9.1 State Variable Analysis—First-Order System
 7.9.2 First-Order State Space Analysis with MATLAB
 7.9.3 State Variable Analysis—Second-Order System
 7.9.4 Matrix Form of the State Space Equations
 7.9.5 Second-Order State Space Analysis with MATLAB
 7.9.6 Differential Equation
 7.9.7 State Space and Transfer Functions with MATLAB
7.10 Conclusions

8 Discrete Signals
 8.1 Introduction
 8.2 Discrete Time vs. Continuous Time Signals
 8.2.1 Digital Signal Processing
 8.3 A Discrete Time Signal
 8.3.1 A Periodic Discrete Time Signal
 8.4 Data Collection and Sampling Rate
 8.4.1 The Selection of a Sampling Rate
 8.4.2 Bandlimited Signal
 8.4.3 Theory of Sampling
 8.4.4 The Sampling Function
 8.4.5 Recovering a Waveform from Samples
 8.4.6 A Practical Sampling Signal
 8.4.7 Minimum Sampling Rate
 8.4.8 Nyquist Sampling Rate
 8.4.9 The Nyquist Sampling Rate Is a Theoretical Minimum
 8.4.10 Sampling Rate and Alias Frequency
 8.4.11 Practical Aliasing
 8.4.12 Analysis of Aliasing
 8.4.13 Anti-Alias Filter
 8.5 Introduction to Digital Filtering
 8.5.1 Impulse Response Function
 8.5.2 A Simple Discrete Response Function
 8.5.3 Delay Blocks Are a Natural Consequence of Sampling
 8.5.4 General Digital Filtering
 8.5.5 The Fourier Transform of Sampled Signals
 8.5.6 The Discrete Fourier Transform (DFT)
 8.5.7 A Discrete Fourier Series
 8.5.8 Computing the Discrete Fourier Transform (DFT)
 8.5.9 The Fast Fourier Transform (FFT)
 8.6 Illustrative Examples
 MATLAB Exercise 1: The FFT and the Inverse FFT
 8.6.1 FFT and Sample Rate
 8.6.2 Practical DFT Issues
 Constructing the Ideal Discrete Signal
 8.7 Discrete Time Filtering with MATLAB
 8.7.1 A Discrete Rectangle
 8.7.2 A Cosine Test Signal
 8.7.3 Check Calculation
 8.8 Conclusions
9 The z-Transform
9.1 Introduction
9.2 The z-Transform
 9.2.1 Fourier Transform, Laplace Transform, and z-transform
 9.2.2 Definition of the z-Transform
 9.2.3 The z-Plane and the Fourier Transform
9.3 Calculating the z-Transform
 9.3.1 Unit Step $u[n]$
 9.3.2 Exponential $a^n u[n]$
 9.3.3 Sinusoid $\cos(n\omega_0) u[n]$ and $\sin(n\omega_0) u[n]$
 9.3.4 Differentiation
 9.3.5 The Effect of Sampling Rate
9.4 A Discrete Time Laplace Transform
9.5 Properties of the z-Transform
9.6 z-Transform Pairs
9.7 Transfer Function of a Discrete Linear System
9.8 MATLAB Analysis with the z-Transform
 9.8.1 First-Order Lowpass Filter
 9.8.2 Pole-Zero Diagram
 9.8.3 Bode Plot
 9.8.4 Impulse Response
 9.8.5 Calculating Frequency Response
 9.8.6 Pole Position Determines Frequency Response
9.9 Digital Filtering—FIR Filter
 9.9.1 A One-Pole FIR Filter
 9.9.2 A Two-Pole FIR Filter
 9.9.3 Higher-Order FIR Filters
 Frequency Response
 Pole-Zero Diagram
 Phase Response
 Step Response
9.10 Digital Filtering—IIR Filter
 9.10.1 A One-Pole IIR Filter
 9.10.2 IIR versus FIR
 9.10.3 Higher-Order IIR Filters
 9.10.4 Combining FIR and IIR Filters
9.11 Conclusions

10 Introduction to Communications
10.1 Introduction
 10.1.1 A Baseband Signal $m(t)$
 10.1.2 The Need for a Carrier Signal
 10.1.3 A Carrier Signal $c(t)$
 10.1.4 Modulation Techniques
 10.1.5 The Radio Spectrum
10.2 Amplitude Modulation
 10.2.1 Transmitted Carrier Double Sideband—(AM-TCDSB)
10.2.2 Demodulation of AM Signals 388
10.2.3 Graphical Analysis 389
10.2.4 AM Demodulation—Diode Detector 391
10.2.5 Examples of Diode Detection 394
10.3 Suppressed Carrier Transmission 394
 10.3.1 Demodulation of Single Sideband Signals 395
 10.3.2 Percent Modulation and Overmodulation 397
10.4 Superheterodyne Receiver 398
 10.4.1 An Experiment with Intermediate Frequency 400
 10.4.2 When Receivers Become Transmitters 401
 10.4.3 Image Frequency 401
 10.4.4 Beat Frequency Oscillator 401
10.5 Digital Communications 402
 10.5.1 Modulation Methods 403
 10.5.2 Morse Code 403
 10.5.3 On Off Keying (OOK) 406
 10.5.4 Bandwidth Considerations 406
 10.5.5 Receiving a Morse Code Signal 406
10.6 Phase Shift Keying 407
 10.6.1 Differential Coding 407
 10.6.2 Higher-Order Modulation Schemes 408
10.7 Conclusions 409

A The Illustrated Fourier Transform 411

B The Illustrated Laplace Transform 419

C The Illustrated z-Transform 425

D MATLAB Reference Guide 431
 D.1 Defining Signals 431
 D.1.1 MATLAB Variables 431
 D.1.2 The Time Axis 432
 D.1.3 Common Signals 432
 D.2 Complex Numbers 433
 D.3 Plot Commands 434
 D.4 Signal Operations 434
 D.5 Defining Systems 435
 D.5.1 System Definition 435
 1. Transfer Function 435
 2. Zeros and Poles and Gain 437
 3. State Space Model 437
 4. Discrete Time Systems 437
 D.5.2 System Analysis 437
 D.6 Example System Definition and Test 438
xviii Contents

E Reference Tables 440
 E.1 Fourier Transform 440
 E.1.1 Fourier Transform Theorems 440
 E.2 Laplace Transform 441
 E.2.1 Laplace Transform Theorems 441
 E.3 z-Transform 442
 E.3.1 z-Transform Theorems 442

Bibliography 443

Index 445

The symbol © indicates advanced content that may be omitted without loss of continuity.