RADIO PROTOCOLS FOR LTE AND LTE-ADVANCED

SeungJune Yi
SungDuck Chun
YoungDae Lee
SungJun Park
SungHoon Jung

LG Electronics, South Korea
Contents

Foreword by Takehiro Nakamura
Preface
About the Authors

1 Introduction

1.1 3GPP
1.2 Evolutionary Path of 3GPP Systems
 1.2.1 GSM
 1.2.2 GPRS/EDGE
 1.2.3 UMTS
 1.2.4 HSPA
 1.2.5 LTE
1.3 Market Trend
1.4 Requirement of LTE
1.5 Overview of LTE Architecture
 1.5.1 Network Architecture
 1.5.2 QoS Architecture
 1.5.3 Radio Protocol Architecture of LTE
1.6 UE Capabilities

References

2 Idle Mode Procedure

2.1 Idle Mode Functions
2.2 Services and Cell Categorization
2.3 UE States and State Transitions
2.4 PLMN Selection
 2.4.1 Triggering of PLMN Selection
 2.4.2 Search of Available PLMNs
 2.4.3 PLMN Selection
2.5 Location Registration
2.6 Cell Selection
 2.6.1 Cell Selection Criterion
 2.6.2 Cell Selection upon RRC Connection Release
2.7 Cell Reselection
2.7.1 Measurement Rules
2.7.2 Reselection to a Neighboring Cell
2.7.3 Mobility State Dependent Scaling
2.8 Access Verification
2.8.1 Cell Barring Status and Cell Reservation Status
2.9 Paging Reception
References

3 Radio Resource Control (RRC)
3.1 RRC Functions and Architecture
3.2 System Information
3.2.1 Scheduling of System Information
3.2.2 System Information Update
3.3 Paging
3.4 Connection Establishment
3.4.1 Step 1: Access Class Barring
3.4.2 Step 2: Transmission of the RRCConnectionRequest Message
3.4.3 Step 3: Receipt of the RRCConnectionSetup Message
3.4.4 Step 4: Transmission of the RRCConnectionSetupComplete Message
3.5 Security
3.6 RRC Connection Reconfiguration
3.6.1 SRB2 Establishment
3.6.2 DRB Establishment
3.6.3 Parallel Procedure with Security Activation
3.7 UE Capability Transfer
3.8 Intra-EUTRA Handover
3.8.1 Handover Preparation
3.8.2 Handover Execution
3.8.3 Handover Completion
3.9 Measurement Control
3.9.1 Measurement Configuration
3.9.2 Measurement Report Triggering
3.9.3 Measurement Reporting
3.10 RRC Connection Re-establishment
3.11 Inter-RAT Mobility
3.11.1 Inter-RAT Mobility from/to 3GPP Access Systems
3.11.2 Inter-RAT Mobility from/to CDMA2000 Systems
3.12 RRC Connection Release
Reference

4 Packet Data Convergence Protocol (PDCP)
4.1 PDCP Functions and Architecture
4.2 Header Compression
4.3 Security
4.3.1 Integrity Protection
4.3.2 Ciphering
4.4 Data Transfer
4.5 SDU Discard
4.6 Handover
4.6.1 SRB Behavior at Handover
4.6.2 UM DRB Behavior at Handover
4.6.3 AM DRB Behavior at Handover
4.7 PDCP PDU Formats
4.7.1 PDCP Data PDU Formats
4.7.2 PDCP Control PDU Formats
Reference

5 Radio Link Control (RLC)
5.1 RLC Functions and Architecture
5.1.1 Transparent Mode (TM) RLC
5.1.2 Unacknowledged Mode (UM) RLC
5.1.3 Acknowledged Mode (AM) RLC
5.2 Framing
5.3 Reordering
5.4 ARQ Operation
5.4.1 Polling
5.4.2 Status Reporting
5.4.3 Retransmission
5.4.4 Re-segmentation
5.5 Window Operation
5.5.1 UM RLC Window Operation
5.5.2 AM RLC Window Operation
5.6 SDU Discard
5.7 RLC Re-establishment
5.8 RLC PDU Formats
5.8.1 TMD PDU Format
5.8.2 UMD PDU Format
5.8.3 AMD PDU Format
5.8.4 AMD PDU Segment Format
5.8.5 STATUS PDU Format
Reference

6 Medium Access Control (MAC)
6.1 MAC Functions and Services
6.2 MAC Architecture
6.3 MAC Channels and Mapping
6.3.1 Transport Channels
6.3.2 Logical Channels
6.3.3 Channel Mapping
6.4 Scheduling 123
 6.4.1 Dynamic Scheduling 124
 6.4.2 Semi-Persistent Scheduling (SPS) 124
6.5 Scheduling Information Delivery 127
 6.5.1 Buffer Status Reporting (BSR) 127
 6.5.2 Scheduling Request (SR) 129
 6.5.3 Power Headroom Report (PHR) 130
6.6 Logical Channel Prioritization (LCP) 130
6.7 Discontinuous Reception (DRX) 134
6.8 Hybrid-ARQ (HARQ) 138
 6.8.1 HARQ in the Uplink 140
 6.8.2 HARQ in the Downlink 140
 6.8.3 TTI Bundling 140
 6.8.4 Measurement Gap 142
6.9 Random Access (RA) Procedure 143
6.10 Time Alignment 145
6.11 MAC PDU Formats 146
 6.11.1 MAC Control Elements (CEs) 148
 6.11.2 MAC PDU for Random Access Response 149
Reference 149

7 Overview of LTE and LTE-Advanced New Features 151
 7.1 Voice over LTE (VoLTE) 151
 7.2 Home eNB (HeNB) 152
 7.3 Public Warning System (PWS) 153
 7.4 Multimedia Broadcast/Multicast Service (MBMS) 153
 7.5 Carrier Aggregation (CA) 154
 7.6 Relay 155
 7.7 Minimization of Drive Test (MDT) 156
 7.8 Enhanced Inter-Cell Interference Coordination (eICIC) 156
 7.9 Machine Type Communication (MTC) 157

8 Voice over LTE (VoLTE) 159
 8.1 Voice Solutions for LTE 159
 8.1.1 Ultimate Voice Solution 159
 8.1.2 Interim Voice Solutions 160
 8.2 IMS VoIP 162
 8.2.1 IMS Profile 162
 8.2.2 Single Radio Voice Call Continuity (SRVCC) 164
 8.3 Circuit-Switched Fallback (CSFB) 167
 8.3.1 CSFB to UTRAN or GERAN 168
 8.3.2 CSFB to CDMA2000 1xRTT 173
 8.4 Service Domain Selection 178
 8.4.1 UE Decision between IMS VoIP and CSFB 180
 8.5 Comparison between IMS VoIP and CSFB 181
8.6 RAN Optimization for VoIP

8.6.1 Robust Header Compression (ROHC) 182
8.6.2 TTI Bundling 182
8.6.3 Semi-Persistent Scheduling for HARQ 183

References 183

9 Home eNB (HeNB) 185

9.1 Architectural Framework 186
9.1.1 Access Mode 186
9.1.2 Use Cases 187
9.1.3 High-level Requirements 188
9.1.4 Network Architecture 189

9.2 CSG Provisioning 189
9.2.1 CSG Subscription Data 190
9.2.2 CSG Member Status 190

9.3 System Information Related to CSG 190
9.3.1 CSG Identification Information 191
9.3.2 CSG Cell Deployment Information 192

9.4 Identification of CSG 193
9.4.1 Autonomous CSG Search 193
9.4.2 Manual CSG Selection 193

9.5 Mobility with CSG Cells 194
9.5.1 Mobility in RRC_IDLE 194
9.5.2 Mobility in RRC_CONNECTED 196

9.6 Support for Hybrid Cells 200
9.6.1 Motivation 200
9.6.2 Features 201

References 203

10 Public Warning System (PWS) 205

10.1 Warning System Architecture 206
10.2 Warning Messages 207
10.3 Delivery of Warning Messages on a Network 209
10.3.1 Warning Message Delivery Procedure 209
10.3.2 Warning Message Cancel Procedure 211

10.4 Delivery of Warning Messages over the Radio Interface 212
10.4.1 PWS Notifications in System Information 213
10.4.2 Indication of PWS Notifications in Paging 214
10.4.3 Segmentation of Warning Messages 214

References 215

11 Multimedia Broadcast/Multicast Service (MBMS) 217

11.1 MBMS Services 217
11.2 Architecture and Functions for MBMS 218
11.3 MBSFN Transmissions 221
Contents

11.4 Radio Protocols for MBMS
11.4.1 Layers 1 and 2 for MBMS
11.4.2 Layer 3 for MBMS
11.5 MBMS Procedures
11.5.1 MBMS Session Start
11.5.2 MCCH Information Acquisition and MRB Configuration
11.5.3 MBMS Session Update
11.5.4 MBMS Session Stop
11.5.5 MRB Release
11.6 MBMS Enhancements in Releases 10 and 11
11.6.1 MBMS Counting
11.6.2 MBMS Service Continuity
References

12 Carrier Aggregation (CA)
12.1 Spectrum and Deployment Scenarios
12.1.1 Spectrum Scenarios
12.1.2 Deployment Scenarios
12.2 Cell Management
12.2.1 PCell and SCell
12.2.2 Signaling of Configuration Information
12.2.3 Linkages and References
12.2.4 Cross-Carrier Scheduling
12.2.5 Extended Measurements
12.2.6 SCell Management
12.2.7 Mobility with Carrier Aggregation
12.3 Extended MAC Functions
12.3.1 SCell Activation and Deactivation
12.3.2 Power Headroom Reporting (PHR)
12.3.3 Logical Channel Prioritization (LCP)
12.3.4 Buffer Status Report (BSR)
12.3.5 Discontinuous Reception (DRX)
12.3.6 Semi-Persistent Scheduling (SPS)
References

13 Relay
13.1 Deployment Scenarios
13.2 Network Architecture for the Relay Node
13.3 Types of Relay Node
13.3.1 Layer Performing Relaying
13.3.2 Frequency Separation of Uu and Un Links
13.4 Relay Node-Specific Operation
13.4.1 Bearer Mapping
13.4.2 Integrity Protection for a UnDRB
13.4.3 RN Subframe Configuration
References