# Contents

Preface to the second edition  
Preface to the first edition  
Preface to the first edition  
Acknowledgments

## 1 Transformer Fundamentals

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Perspective</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Applications and Types of Transformers</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Principles and the Equivalent Circuit</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Representation of a Transformer in a Power System</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Open-Circuit and Short-Circuit Tests</td>
<td>23</td>
</tr>
<tr>
<td>1.6 Voltage Regulation and Efficiency</td>
<td>26</td>
</tr>
<tr>
<td>1.7 Parallel Operation of Transformers</td>
<td>34</td>
</tr>
<tr>
<td>References</td>
<td>36</td>
</tr>
</tbody>
</table>

## 2 Magnetic Characteristics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Construction</td>
<td>38</td>
</tr>
<tr>
<td>2.2 Hysteresis, Eddy, and Anomalous Losses</td>
<td>44</td>
</tr>
<tr>
<td>2.3 Excitation Characteristics</td>
<td>48</td>
</tr>
<tr>
<td>2.4 Over-Excitation Performance</td>
<td>50</td>
</tr>
<tr>
<td>2.5 No-Load Loss Test</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Impact of Manufacturing Processes</td>
<td>58</td>
</tr>
<tr>
<td>2.7 Inrush Current</td>
<td>60</td>
</tr>
<tr>
<td>2.8 Influence of the Core Construction and Winding Connections on No-Load Harmonic Phenomenon</td>
<td>71</td>
</tr>
<tr>
<td>2.9 Transformer Noise</td>
<td>73</td>
</tr>
<tr>
<td>2.10 Rotational Core Losses</td>
<td>76</td>
</tr>
<tr>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>
### Impedance Characteristics

3.1 Reactance Calculation
3.2 Different Approaches for Reactance Calculation
3.3 Analytical Methods
3.4 Numerical Method for Reactance Calculation
3.5 Impedance Characteristics of Three-Winding Transformers
3.6 Reactance Calculation for Zigzag Transformers
3.7 Zero-Sequence Reactances
3.8 Stabilizing Tertiary Winding

References

### Eddy Currents and Winding Stray Losses

4.1 Field Equations
4.2 Poynting Vector
4.3 Eddy Current and Hysteresis Losses
4.4 Effect of Saturation
4.5 Eddy Losses in Transformer Windings
4.6 Circulating Current Loss in Transformer Windings

References

### Stray Losses in Structural Components

5.1 Factors Influencing Stray Losses
5.2 Overview of Methods for Stray Loss Estimation
5.3 Core Edge Loss
5.4 Stray Loss in Frames
5.5 Stray Loss in Flitch Plates
5.6 Stray Loss in Tank
5.7 Stray Loss in Bushing Mounting Plates
5.8 Evaluation of Stray Loss Due to High Current Leads
5.9 Measures for Stray Loss Control
5.10 Methods for Experimental Verification
5.11 Estimation of Stray Losses in Overexcitation Condition
5.12 Load Loss Measurement

References

### Short-Circuit Stresses and Strength

6.1 Short-Circuit Currents
6.2 Thermal Capability during a Short-Circuit
6.3 Short-Circuit Forces
6.4 Dynamic Behavior under Short-Circuits
6.5 Failure Modes Due to Radial Forces
6.6 Failure Modes Due to Axial Forces
6.7 Failure Modes Due to Interactive (Combined Axial and Radial) Forces 279
6.8 Effect of Prestress 280
6.9 Short-Circuit Test 281
6.10 Effect of Inrush Current 283
6.11 Split-Winding Transformers 283
6.12 Short-Circuit Withstand 285
6.13 Calculation of Electrodynamic Force between Parallel Conductors 289
6.14 Design of Clamping Structures 291
References 293

7 Surge Phenomena in Transformers 299
7.1 Initial Voltage Distribution 299
7.2 Ground Capacitance Calculations 304
7.3 Capacitance of Windings 305
7.4 Inductance Calculation 320
7.5 Standing Waves and Traveling Waves 322
7.6 Methods for Analysis of Impulse Distribution 325
7.7 Computation of Impulse Voltage Distribution Using State Variable Method 328
7.8 Winding Design for Reducing Internal Overvoltages 336
References 343

8 Insulation Design 349
8.1 Calculation of Stresses for Simple Configurations 350
8.2 Field Computations 355
8.3 Factors Affecting Insulation Strength 357
8.4 Test Methods and Design Insulation Level (DIL) 372
8.5 Insulation between Two Windings 375
8.6 Internal Insulation 377
8.7 Design of End Insulation 379
8.8 High-Voltage Lead Clearances 382
8.9 Statistical Analysis for Optimization and Quality Enhancement 385
References 387

9 Cooling Systems 393
9.1 Modes of Heat Transfer 394
9.2 Cooling Arrangements 397
9.3 Dissipation of Core Heat 402
9.4 Dissipation of Winding Heat 403
9.5 Aging and Life Expectancy 406
9.6  Direct Hot Spot Measurement 411
9.7  Static Electrification Phenomenon 412
9.8  Recent Trends in Computations 414
References 416

10  Structural Design 419
10.1 Importance of Structural Design 419
10.2 Different Types of Loads and Tests 420
10.3 Classification of Transformer Tanks 422
10.4 Tank Design 425
10.5 Methods of Analysis 427
10.6 Overpressure Phenomenon in Transformers 432
10.7 Seismic Analysis 433
10.8 Transformer Noise: Characteristics and Reduction 436
10.9 Transport Vibrations and Shocks 442
References 442

11  Special Transformers 445
11.1 Rectifier Transformers 445
11.2 Converter Transformers for HVDC 451
11.3 Furnace Transformers 458
11.4 Phase Shifting Transformers 463
References 467

12  Electromagnetic Fields in Transformers: Theory and Computations 471
12.1 Perspective 472
12.2 Basics of Electromagnetic Fields Relevant to Transformer Engineering 476
12.3 Potential Formulations 502
12.4 Finite Element Method 516
12.5 FEM Formulations 528
12.6 Coupled Fields in Transformers 538
12.7 Computation of Performance Parameters 552
References 564

13  Transformer–System Interactions and Modeling 569
13.1 Power Flow Analysis with Transformers 569
13.2 Harmonic Studies 580
13.3 Ferroresonance 583
13.4 Arc Furnace Application 587
Contents

13.5 Geomagnetic Disturbances 589
13.6 Sympathetic Inrush Phenomenon 589
13.7 Internal Resonances Due to System Transients 591
13.8 Very Fast Transient Overvoltages 592
13.9 Transients in Distribution Transformers 592
13.10 Low-, Mid-, and High-Frequency Models of Transformers 593
References 605

14 Monitoring and Diagnostics 611

14.1 Conventional Tests 613
14.2 Dissolved Gas Analysis 616
14.3 Partial Discharge Diagnostics 617
14.4 Degree of Polymerization and Furan Analysis 626
14.5 Time Domain Dielectric Response Methods 627
14.6 Frequency Domain Dielectric Response Method 639
14.7 Detection of Winding Displacements 644
14.8 Accessories 655
14.9 Other Diagnostic Tests/Instruments 657
14.10 Life Assessment and Refurbishment 659
References 659

15 Recent Trends in Transformer Technology 665

15.1 Magnetic Circuit 666
15.2 Windings 666
15.3 New Insulating Liquids 668
15.4 Advanced Computations 669
15.5 Transformers for Renewable Energy Applications 671
15.6 Applications of Power Electronics 672
15.7 Other Technologies 674
15.8 Trends in Monitoring and Diagnostics 676
References 678

Appendix A: Sample Design 681
Appendix B: Vector Groups 701
Appendix C: Fault Calculations 705
Appendix D: Stress and Capacitance Formulae 711
Index 721