INFORMATION THEORY
AND CODING BY EXAMPLE

MARK KELBERT
Swansea University, and Universidade de São Paulo

YURI SUHOV
University of Cambridge, and Universidade de São Paulo

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface page vii

1 Essentials of Information Theory 1
 1.1 Basic concepts. The Kraft inequality. Huffman’s encoding 1
 1.2 Entropy: an introduction 18
 1.3 Shannon’s first coding theorem. The entropy rate of a Markov source 41
 1.4 Channels of information transmission. Decoding rules. Shannon’s second coding theorem 59
 1.5 Differential entropy and its properties 86
 1.6 Additional problems for Chapter 1 95

2 Introduction to Coding Theory 144
 2.1 Hamming spaces. Geometry of codes. Basic bounds on the code size 144
 2.2 A geometric proof of Shannon’s second coding theorem. Advanced bounds on the code size 162
 2.3 Linear codes: basic constructions 184
 2.4 The Hamming, Golay and Reed–Muller codes 199
 2.5 Cyclic codes and polynomial algebra. Introduction to BCH codes 213
 2.6 Additional problems for Chapter 2 243

3 Further Topics from Coding Theory 269
 3.1 A primer on finite fields 269
 3.2 Reed–Solomon codes. The BCH codes revisited 291
 3.3 Cyclic codes revisited. Decoding the BHC codes 300
 3.4 The MacWilliams identity and the linear programming bound 313
 3.5 Asymptotically good codes 328
 3.6 Additional problems for Chapter 3 340
4 Further Topics from Information Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Gaussian channels and beyond</td>
<td>366</td>
</tr>
<tr>
<td>4.2 The asymptotic equipartition property in the continuous time setting</td>
<td>397</td>
</tr>
<tr>
<td>4.3 The Nyquist–Shannon formula</td>
<td>409</td>
</tr>
<tr>
<td>4.4 Spatial point processes and network information theory</td>
<td>436</td>
</tr>
<tr>
<td>4.5 Selected examples and problems from cryptography</td>
<td>453</td>
</tr>
<tr>
<td>4.6 Additional problems for Chapter 4</td>
<td>480</td>
</tr>
</tbody>
</table>

* Bibliography | 501 |
* Index | 509 |