Electronic Structure Methods for Complex Materials

The orthogonalized linear combination of atomic orbitals

WAI-YIM CHING and PAUL RULIS
University of Missouri-Kansas City, USA
Contents

1 **Electronic Structure Methods in Materials Theory**
 1.1 Introduction 1
 1.2 One electron methods 2
 1.3 Quantum chemical approaches and solid state methods 3
 1.4 The OLCAO method 3

2 **Historical Account of the LCAO Method**
 2.1 Early days of the band theory of solids 6
 2.2 Origin of the LCAO method 7
 2.3 Use of Gaussian orbitals in LCAO calculations 8
 2.4 Beginning of the OLCAO method 10
 2.5 Current status and future trends of the OLCAO method 11

3 **Basic Theory and Techniques of the OLCAO Method**
 3.1 The atomic basis functions 14
 3.2 Bloch functions and the Kohn–Sham equation 18
 3.3 The site-decomposed potential function 21
 3.4 The technique of Gaussian transformation 24
 3.5 The technique of core orthogonalization 28
 3.6 Brillouin zone integration 31
 3.7 Special advantages in the OLCAO method 32

4 **Calculation of Physical Properties Using the OLCAO Method**
 4.1 Band structure and band gap 35
 4.2 Density of states and its partial components 37
 4.3 Effective charges, bond order, and the localization index 38
 4.4 Spin-polarized band structures 40
 4.5 Scalar relativistic corrections and spin-orbit coupling 41
 4.6 Magnetic properties 44
 4.7 Linear optical properties and dielectric functions 45
 4.8 Conductivity function in metals 47
 4.9 Non-linear optical properties of insulators 49
 4.10 Bulk properties and geometry optimization 50
5 Application to Semiconductors and Insulators

5.1 Elemental and binary semiconductors
5.2 Binary insulators
5.3 Oxides
5.3.1 Binary oxides
5.3.2 Ternary oxides
5.3.3 Laser host crystals
5.3.4 Quaternary oxides and other complex oxides
5.4 Nitrides
5.4.1 Binary nitrides
5.4.2 Spinel nitrides
5.4.3 Ternary and quaternary nitrides and oxynitrides
5.4.4 Other complex nitrides
5.5 Carbides
5.5.1 SiC
5.5.2 Other carbides
5.6 Boron and boron compounds
5.6.1 Elemental boron
5.6.2 B₄C
5.6.3 Other boron compounds
5.6.4 Other forms of complex boron compounds
5.7 Phosphates
5.7.1 Simple phosphates: AlPO₄
5.7.2 Complex phosphates: KTP
5.7.3 Lithium iron phosphate: LiFePO₄

6 Application to Crystalline Metals and Alloys

6.1 Elemental metals and alloys
6.1.1 Elemental metals
6.1.2 Fe borides
6.1.3 Fe nitrides
6.1.4 Yttrium iron garnet
6.2 Permanent hard magnets
6.2.1 Application to R₂Fe₁₄B crystals
6.2.2 Further applications to Nd₂Fe₁₄B
6.2.3 Application to Re₂Fe₁₇ and related phases
6.3 High Tc superconductors
6.3.1 YBCO superconductor
6.3.2 Other oxide superconductors
6.3.3 Non-oxide superconductors
6.4 Other recent studies on metals and alloys
6.4.1 Mo-Si-B alloys
6.4.2 MAX phases

7 Application to Complex Crystals

7.1 Carbon-related systems
7.1.1 Bucky-ball (C₆₀) and alkali-doped C₆₀ crystals
7.1.2 Negative curvature graphitic carbon structures
10 Application to Biomolecular Systems

10.1 Vitamin B₁₂ cobalamins
10.2 b-DNA models
10.3 Collagen models
10.4 Other biomolecular systems

11 Application to Core Level Spectroscopy

11.1 Basic principles of the supercell OLCAO method
11.2 Select examples
 11.2.1 Simple crystals
 11.2.2 Complex crystals
 11.2.3 Y–K edge in different local environments
 11.2.4 Boron and boron-rich compounds
 11.2.5 Substitutional defects in crystals
 11.2.6 Biomolecular systems
 11.2.7 Application to grain boundaries and surfaces
 11.2.8 Application to intergranular glassy films
 11.2.9 Statistical description of O–K edges in bulk water
11.3 Spectral imaging
 11.3.1 Introduction
 11.3.2 Procedures for SI
 11.3.3 Application to a Si defect model
11.4 Further development of the supercell OLCAO method

12 Enhancement and Extension of the OLCAO Method

12.1 Versatility
 12.1.1 The OLCAO basis set
 12.1.2 The OLCAO potential and charge density representation
 12.1.3 Relativistic OLCAO
 12.1.4 Exchange-correlation functionals
 12.1.5 Magnetism and non-collinear spin polarization
 12.1.6 Configuration interaction
 12.1.7 Hamaker constants and long-range van der Waals–London interaction
12.2 Efficiency
 12.2.1 The memory hierarchy
 12.2.2 Modularization
 12.2.3 Parallelization
12.3 Ease of use
 12.3.1 User interface and control
 12.3.2 Interaction with third party software
 12.3.3 Data visualization

Appendices
A. Database for Atomic Basis Functions
B. Database for Initial Atomic Potential Functions