Foundations of MEMS

Second Edition

Chang Liu
McCormick School of Engineering and Applied Science
Northwestern University

International Edition Contributions by

Vaishali B. Mungurwadi
B. V. Bhoomaraddi College of Engineering & Technology

Anil V. Nandi
B. V. Bhoomaraddi College of Engineering & Technology

Prentice Hall
Upper Saddle River Boston Columbus San Francisco New York Indianapolis London
Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City
Munich Paris Amsterdam Cape Town
Contents

2.6 New Materials and Fabrication Processes 71
2.7 Process Selection and Design 73
 2.7.1 Points of Consideration for Deposition Processes 73
 2.7.2 Points of Consideration for Etching Processes 73
 2.7.3 Ideal Rules for Building a Process Flow 75
 2.7.4 Rules for Building a Robust Process 75
Summary 77
Problems 77
References 79

Chapter 3
Review of Essential Electrical and Mechanical Concepts
3.0 Preview 84
3.1 Conductivity of Semiconductors 85
 3.1.1 Semiconductor Materials 85
 3.1.2 Calculation of Charge Carrier Concentration 86
 3.1.3 Conductivity and Resistivity 89
3.2 Crystal Planes and Orientations 93
3.3 Stress and Strain 96
 3.3.1 Internal Force Analysis: Newton's Laws of Motion 96
 3.3.2 Definitions of Stress and Strain 98
 3.3.3 General Scalar Relation Between Tensile Stress and Strain 101
 3.3.4 Mechanical Properties of Silicon and Related Thin Films 103
 3.3.5 General Stress–Strain Relations 105
3.4 Flexural Beam Bending Analysis Under Simple Loading Conditions 107
 3.4.1 Types of Beams 108
 3.4.2 Longitudinal Strain Under Pure Bending 110
 3.4.3 Deflection of Beams 112
 3.4.4 Finding the Spring Constants 113
3.5 Torsional Deflections 118
3.6 Intrinsic Stress 120
3.7 Dynamic System, Resonant Frequency, and Quality Factor 125
 3.7.1 Dynamic System and Governing Equation 125
 3.7.2 Response Under Sinusoidal Resonant Input 126
 3.7.3 Damping and Quality Factor 128
 3.7.4 Resonant Frequency and Bandwidth 128
3.8 Active Tuning of Spring Constant and Resonant Frequency 129
3.9 A List of Suggested Courses and Books 130
Summary 131
Problems 132
References 136

Chapter 4
Electrostatic Sensing and Actuation
4.0 Preview 141
4.1 Introduction to Electrostatic Sensors and Actuators 141
4.2 Parallel-Plate Capacitor 143
 4.2.1 Capacitance of Parallel Plates 143
 4.2.2 Equilibrium Position of Electrostatic Actuator under Bias 146
 4.2.3 Pull-in Effect of Parallel-Plate Actuators 149
Chapter 13 Polymer MEMS

13.0 Preview 465
13.1 Introduction 465
13.2 Polymers in MEMS 467
 13.2.1 Polyimide 469
 13.2.2 SU-8 469
 13.2.3 Liquid Crystal Polymer (LCP) 470
 13.2.4 PDMS 471
 13.2.5 PMMA 473
 13.2.6 Parylene 473
 13.2.7 Fluorocarbon 474
 13.2.8 Other Polymers 474
13.3 Representative Applications 475
 13.3.1 Acceleration Sensors 475
 13.3.2 Pressure Sensors 477
 13.3.3 Flow Sensors 481
 13.3.4 Tactile Sensors 483
Summary 486
Problems 486
References 487

Chapter 14 Micro Fluidics Applications

14.0 Preview 491
14.1 Motivation for Microfluidics 491
14.2 Essential Biology Concepts 492
14.3 Basic Fluid Mechanics Concepts 495
 14.3.1 The Reynolds Number and Viscosity 495
 14.3.2 Methods for Fluid Movement in Channels 497
 14.3.3 Pressure Driven Flow 497
 14.3.4 Electrokinetic Flow 500
 14.3.5 Electrophoresis and Dielectrophoresis 501
14.4 Design and Fabrication of Selective Components 503
 14.4.1 Channels 503
 14.4.2 Valves 515
Summary 518
Problems 518
References 520

Chapter 15 Case Studies of Selected MEMS Products

15.0 Preview 525
15.1 Case Studies: Blood Pressure (BP) Sensor 526
 15.1.1 Background and History 526
 15.1.2 Device Design Considerations 527
 15.1.3 Commercial Case: NovaSensor BP Sensor 528
15.2 Case Studies: Microphone 530
 15.2.1 Background and History 530
 15.2.2 Design Considerations 531
 15.2.3 Commercial Case: Knowles Microphone 532
15.3 Case Studies: Acceleration Sensors 533
 15.3.1 Background and History 533
 15.3.2 Design Considerations 533
 15.3.3 Commercial Case: Analog Devices and MEMSIC 537
15.4 Case Studies: Gyros 538
 15.4.1 Background and History 538
 15.4.2 The Coriolis Force 538
 15.4.3 MEMS Gyro Design 540
 15.4.4 Single Axis Gyro Dynamics 542
 15.4.5 Commercial Case: InvenSense Gyro 544
15.5 Summary of Top Concerns for MEMS Product Development 545
 15.5.1 Performance and Accuracy 546
 15.5.2 Repeatability and Reliability 546
 15.5.3 Managing the Cost of MEMS Products 547
 15.5.4 Market Uncertainties, Investment, and Competition 547
Summary 548
Problems 548
References 552

Appendix 1 Characteristics of Selected MEMS Materials 553
Appendix 2 Frequently Used Formula for Beams, Cantilevers, and Plates 556
Appendix 3 Basic Tools for Dealing with a Mechanical Second-order Dynamic System 558
Appendix 4 Most Commonly Encountered Materials 562
Appendix 5 Most Commonly Encountered Material Removal Process Steps 563
Appendix 6 A List of General Compatibility between General Materials and Processes 564
Appendix 7 Comparison of Commercial Inertial Sensors 567
Answers to Selected Problems 569
Index 571