EMBEDDED SYSTEMS CIRCUITS and PROGRAMMING

Julio Sanchez
Maria P. Canton
Table of Contents

Preface

Chapter 1 – Real-Time Computing

1.0 Defining the Embedded System
1.1 Embedded Systems History
1.2 Hardware Complexity
1.2.1 Processor
1.2.2 Microcontrollers
1.2.3 Hardware and Software
1.3 Execution in Real-Time
1.3.1 Hard and Soft Real-Time Systems

Chapter 2 – Circuit Fundamentals

2.1 Electrical Circuit
2.2 Circuit Concepts and Components
2.3 Digital Electronics
2.4 Diode
2.4.1 Light-Emitting Diode (LED)
2.5 Transistors
2.5.1 Bipolar Transistor
2.5.2 MOS Transistor

Chapter 3 – Logic Gates and Circuit Components

3.1 Logic Gates
3.2 Power Supplies
3.3 Clocked Logic and Flip-Flops
3.3.1 RS Flip-Flop
3.3.2 Clocked Circuits
3.3.3 D Flip-Flop
3.3.4 Edge-Triggered D Flip-Flop
3.3.5 Preset and Clear Signals
3.3.6 D Flip-Flop Waveform Action
3.3.7 Flip-Flop Applications
3.4 Digital Clocks
3.4.1 Clock Waveforms
3.4.2 TTL Clock
3.4.3 555 Timer
3.4.4 Microcontroller Clocks

3.5 Counters and Frequency Dividers
3.5.1 Frequency Dividers
3.5.2 JK Flip-Flop Counter
3.5.3 Ripple Counters
3.5.4 Decoding Gates
3.5.5 Synchronous Counters
3.5.6 Counter ICs
3.5.7 Shift Registers

3.6 Multiplexers and Demultiplexers
3.6.1 Multiplexers
3.6.2 Demultiplexers
3.6.3 Multiplexer and Demultiplexer ICs

Chapter 4 – Input and Output Devices
4.1 Obtaining Input
4.2 Switches
 4.2.1 Switch Contact Bounce
 4.2.2 Keypads
4.3 Output Devices
 4.3.1 Seven-Segment LED
 4.3.2 Liquid Crystal Displays
 4.3.3 LCD Technologies

Chapter 5 – From Circuit Schematics to PCB
5.1 Circuit Diagram
 5.1.1 Symbols
 5.1.2 Tools for Electronic Circuit Design
5.2 Circuit Board Design
 5.2.1 Board Design Standards
 5.2.2 Gerber File Format
5.3 Developing the Circuit Prototype
 5.3.1 Breadboard
 Limitations of Breadboards
 Breadboarding Tools and Techniques
 5.3.2 Wire-Wrapping
 5.3.3 Perfboards
5.4 Printed Circuit Boards
 5.4.1 PCB Layers
 5.4.2 PCB Connectors
5.5 Making Your Own PCB
 5.5.1 Drawing the CPB Circuit
 5.5.2 Printing the PCB
 5.5.3 Transferring the PCB Image
 5.5.4 Etching the Board
 5.5.5 Finishing the Board
 5.5.6 Backside Image
Table of Contents

9.5 I/O Demo Board 147
 9.5.1 TestDemo1 Program 148
9.6 Comparisons in PIC Programming 151
 9.6.1 PIC Carry Flag 152

Chapter 10 – PIC Interrupt System 153
 10.1 Interrupts 153
 10.1.1 16F84 Interrupts 153
 10.1.2 Interrupt Control Register 153
 10.1.3 OPTION Register 154
 10.2 Interrupt Sources 155
 10.2.1 Port B External Interrupt 156
 10.2.2 Timer0 Interrupt 156
 10.2.3 Port B Line Change Interrupt 157
 10.2.4 Multiple External Interrupts 159
 10.2.5 EEPROM Data Write Interrupt 159
 10.3 Developing the Interrupt Handler 159
 10.3.1 Context Saving Operations 160
 Saving W and STATUS Registers 160
 10.4 Interrupt Programming 161
 10.4.1 Programming the External Interrupt 161
 RB0 Interrupt Initialization 162
 RB0 ISR 163
 10.4.2 Wake-Up from SLEEP Using the RB0 Interrupt 164
 SleepDemo Program 165
 10.4.3 Port B Bits 4-7 Status Change Interrupt 166
 RB4-7 Interrupt Initialization 166
 RB4-7 Change ISR 168
 10.5 Sample Programs 170
 10.6 Demonstration Programs 171
 10.6.1 RB0Int Program 171
 10.6.2 SleepDemo Program 175
 10.6.3 RB4to7Int Program 177

Chapter 11 – Timers and Counters 183
 11.1 Controlling the Time Lapse 183
 11.1.1 16F84 Timer0 Module 183
 11.1.2 Timer0 Operation 184
 Timer0 Interrupt 185
 Timer0 Prescaler 185
 11.2 Delays Using Timer0 186
 11.2.1 Long Delay Loops 187
 How Accurate Is the Delay? 188
 11.3 Timer0 as a Counter 188
 11.4 Timer0 Programming 189
 11.4.1 Programming a Counter 190
 Timer/Counter Test Circuit 190
 TimerCounter Program 191
 Code Details 191
11.4.2 Timer0 as a Delay Timer 192
 Delay Timer Circuit 192
11.4.3 DelayTimer Program 193
 Code Details 193
11.4.4 Variable Time Lapse 194
11.4.5 Variable Lapse Timer Program 195
 Code Details 195
11.4.6 Interrupt-Driven Timer 198
11.4.7 TimerInt Program 198
 Code Details 198

11.5 Watchdog Timer 201
 11.5.1 Watchdog Timer Programming 202

11.6 Demonstration Programs 202
 11.6.1 Tmr0Counter program 202
 11.6.2 Timer0 Program 205
 11.6.3 LapseTimer Program 207
 11.6.4 LapseTmrInt Program 211

Chapter 12 – LCD Hardware and Programming 217

12.1 Liquid Crystal Display 217
 12.1.1 LCD Features and Architecture 217
 12.1.2 LCD Functions and Components 218
 Internal Registers 218
 Busy Flag 218
 Address Counter 218
 Display Data RAM (DDRAM) 218
 Character Generator ROM (CGROM) 218
 Character Generator RAM (CGRAM) 219
 Timing Generation Circuit 219
 Liquid Crystal Display Driver Circuit 220
 Cursor/Blink Control Circuit 220
 12.1.3 Connectivity and Pin-Out 220

12.2 Interfacing with the HD44780 221
 12.2.1 Busy Flag or Timed Delay Options 222
 12.2.2 Contrast Control 223
 12.2.3 Display Backlight 223
 12.2.4 Display Memory Mapping 223

12.3 HD44780 Instruction Set 225
 12.3.1 Instruction Set Overview 225
 Clearing the Display 225
 Return Home 226
 Entry Mode Set 226
 Display and Cursor ON/OFF 226
 Cursor/Display Shift 226
 Function Set 227
 Set CGRAM Address 227
 Set DDRAM Address 227
 Read Busy Flag and Address Register 227
 Write Data 227
 Read Data 228
 12.3.2 A 16F84 8-Bit Data Mode Circuit 228
12.4 LCD Programming

12.4.1 Defining Constants and Variables
Using MPLAB Data Directives

12.4.2 LCD Initialization
Function Set Command
Display Off
Display and Cursor On
Set Entry Mode
Cursor and Display Shift
Clear Display

12.4.3 Auxiliary Operations
Time Delay Routine
Pulsing the E Line
Reading the Busy Flag
Bit Merging Operations

12.4.4 Text Data Storage and Display
Generating and Storing a Text String
Displaying the Text String

12.4.5 Data Compression Techniques
4-Bit Data Transfer Mode
Master/Slave Systems

12.5 Sample Programs

Chapter 13 – Analog-to-Digital and Real-Time Clocks

13.1 Clocks and the Digital Revolution

13.2 A/D Converters

13.2.1 Converter Resolution

13.2.2 ADC Implementation

13.3 A/D Integrated Circuits

13.3.1 ADC0331 Sample Circuit and Program

13.4 PIC Onboard A/D Hardware

13.4.1 A/D Module on the 16F87x

13.4.2 A/D Module Sample Circuit and Program

13.5 Real-Time Clocks

13.5.1 NJU6355 Real-Time Clock

13.5.2 RTC Demonstration Circuit and Program

13.6 Demonstration Programs

Chapter 14 – Data EEPROM

14.1 EEPROM Programming

14.2 EEPROM Programming
14.2.1 Reading EEPROM Data 323
14.2.2 EEPROM Data Memory Write 323
14.3 EEPROM Programming Application 324
 14.3.1 EECounter Program 324
 Code Details 324
14.4 Demonstration Programs 329
 14.4.1 EECounter Program 329
 14.4.2 Ser2EEP Program 341
 14.4.3 I2CEEP Program 358

Chapter 15 – Stepper Motors 379

 15.1 Description and Operation 379
 15.1.1 Stepper Motor Types
 Variable Reluctance 381
 Permanent Magnet 381
 Hybrid 381
 15.1.2 Unipolar Stepper Motors 382
 15.1.3 Determining Unipolar and Bipolar Wiring
 Four-Wire Motor 383
 Six-Wire Unipolar Motor 383
 Five-Wire Unipolar 383
 15.1.4 Bipolar Stepper Motors 384

 15.2 Stepper Motor Controls 384
 15.2.1 Stepping Modes
 Wave Drive Mode 385
 Full Step Mode 386
 Half Step Mode 387
 Microstepping 387

Chapter 16 – Stepper Motor Circuit Components 389

 16.1 Circuit Elements 389
 16.1.1 Input, Output, and Feedback 390
 16.2 Translator 390
 16.2.1 PIC Microcontroller as a Translator 390
 16.3 Translator/Drivers 391
 16.3.1 UCN 5804 391
 16.3.2 L297 392
 16.3.3 EDE1204 394
 16.3.4 SLA7060 and SLA7024 394
 16.4 Power Driver 395
 16.4.1 Unipolar Drivers
 PIC Microcontroller as a Driver 395
 ULN2803A 395
 TIP 120 396
 16.4.2 Bipolar Drivers 397
 16.4.3 Transistorized H Bridge
 Snubber Diodes 398
 16.4.4 H Bridge ICs
 L293D 399
 L298 400
Chapter 17 – Unipolar Motor Circuits and Programs

17.1 Stepper Motor Control Circuits
17.1.1 Stepper Motor Circuit Schematic Conventions
17.2 Motor Speed Control
17.2.1 Speed Control from Digital Input
17.2.2 Analog Input Speed Control
17.3 Unipolar Motor Control Circuits
17.3.1 Matching Circuit to Motor Power
17.3.2 16F84 Unipolar Circuit
17.3.3 5804 Unipolar Circuit
17.3.4 16F686 PIC Circuit
17.3.5 16F686 Programming
17.3.6 Stepper Motor Position Control
17.4 Demonstration Programs
17.5 Other Sources of Control

Chapter 18 – Constant-Voltage Bipolar Motor Controls

18.1 Unipolar versus Bipolar
18.2 Simple, L293 Bipolar Circuit
18.3 Demonstration Programs
18.4 Other Sources of Control

Chapter 19 – Advanced Motor Controls

19.1 Choppers and Microstepping
19.2 Chopper Circuit Fundamentals
19.3 L297/298 Chopper Circuit
19.4 Other Sources of Control
19.4 A Chopper-Based Demo Board
 19.4.1 Motor Circuit Power Requirements 492
 19.4.2 Chopper Demo Program 494

19.5 Microstepping 494
 19.5.1 Microstepping Fundamentals 497
 Microstepping Theory 497
 Pulse Width Modulation (PWM) 499

19.6 Programming PWM
 19.6.1 CCP Module 500
 19.6.2 PWM Circuit and Software 502
 19.6.3 Microstepping by PWM 505
 19.6.4 Microstepping Sample Program 506

19.7 Microstepping ICs 508
 19.7.1 Allegro 3955 IC 508
 19.7.2 3955-Based Circuit 510
 19.7.3 3955 Motor Driver Program 512

19.8 Demonstration Programs 514
 19.8.1 PWM_DEMO_873.asm 514
 19.8.2 PIC_Chopper.asm 518
 19.8.3 PWM_Micstep.asm 522
 19.8.4 PIC873_3955.asm 530

Chapter 20 – Communications 543

20.1 PIC Communications Overview 543

20.2 Serial Data Transmission 544
 20.2.1 Asynchronous Serial Transmission 544
 20.2.2 Synchronous Serial Transmission 546
 20.2.3 PIC Serial Communications 546
 20.2.4 RS-232-C Standard 547
 Essential Concepts 548
 Serial Bit Stream 549
 Parity Testing 549
 Connectors and Wiring 550
 Null Modem 550
 Null Modem Cable 551
 20.2.5 EIA-485 Standard 553
 EIA-485 in PIC-based Systems 554

20.3 Parallel Data Transmission 554
 20.3.1 PIC Parallel Slave Port (PSP) 555

20.4 PIC “Free-Style” Serial Programming 555
 20.4.1 PIC-to-PIC Serial Communications 556
 PIC-to-PIC Serial Communications Circuits 556
 PIC-to-PIC Serial Communications Programs 558
 20.4.2 Program Using Shift Register ICs 564
 74HC165 Parallel-to-Serial Shift Register 565
 74HC164 Serial-to-Parallel Shift Register 568

20.5 PIC Protocol-Based Serial Programming 570
 20.5.1 RS-232-C Communications on the 16F84 570
 RS-232-C Transceiver IC 571
 PIC-to-PC Communications 572
Table of Contents

20.5.2 RS-232-C Communications on the 16F87x
- 16F87x USART Module
- USART Baud Rate Generator
- 16F87x USART Asynchronous Transmitter
- 16F87x USART Asynchronous Receiver
- PIC-to-PC RS-232-C Communications Circuit
- 16F877 PIC Initialization Code
- USART Receive and Transmit Routines
- USART Receive Interrupt

20.6 Demonstration Programs
- SerialSnd Program
- SerialRcv Program
- Serial6465 Program
- TTYUsart Program
- SerComLCD Program
- SerIntLCD Program

Appendix A – Resistor Color Codes

Appendix B – Essential Electronics

B.1 Atom

B.2 Isotopes and Ions

B.3 Static Electricity

B.4 Electrical Charge
- Voltage
- Current
- Power
- Ohm’s Law

B.5 Electrical Circuits
- Types of Circuits

B.6 Circuit Elements
- Resistors
- Revisiting Ohm's Law
- Resistors in Series and Parallel
- Capacitors
- Capacitors in Series and in Parallel
- Inductors
- Transformers

B.7 Semiconductors
- Integrated Circuits
- Semiconductor Electronics
- P-Type and N-Type Silicon
- Diode
Appendix C – Numeric Data

C.1 Numbers in Computing
 C.1.1 Counting
 C.1.2 Tally System
 C.1.3 Roman Numerals

C.2 Origins of the Decimal System
 C.2.1 Number Systems for Digital-Electronics
 C.2.2 Positional Characteristics
 C.2.3 Radix or Base of a Number System

C.3 Types of Numbers
 C.3.1 Whole Numbers
 C.3.2 Signed Numbers
 C.3.3 Rational, Irrational, and Imaginary Numbers

C.4 Radix Representations
 C.4.1 Decimal versus Binary Numbers
 C.4.2 Hexadecimal and Octal

C.5 Number System Conversions
 C.5.1 Binary-to-ASCII-Decimal
 C.5.2 Binary-to-Hexadecimal Conversion
 C.5.3 Decimal-to-Binary Conversion

Appendix D – Character Data

D.1 Character Representations
 D.1.1 Electronic-Digital Machines

D.2 Character Representations
 D.2.1 ASCII
 D.2.2 EBCDIC and IBM
 D.2.3 Unicode

D.3 Storage and Encoding of Integers
 D.3.1 Signed and Unsigned Representations
 D.3.2 Word Size
 D.3.3 Byte Ordering
 D.3.4 Sign-Magnitude Representation
 D.3.5 Radix Complement Representation

D.4 Encoding of Fractional Numbers
 D.4.1 Fixed-Point Representations
 D.4.2 Floating-Point Representations
 D.4.3 Standardized Floating-Point Representations
 D.4.4 IEEE 754 Single Format
 D.4.5 Encoding and Decoding Floating-Point Numbers

D.5 Binary-Coded Decimals (BCD)
 D.5.1 Floating-Point BCD

Appendix E – Digital Arithmetic and Conversions

E.1 Microcontroller Arithmetic

E.2 Unsigned and Two’s Complement Arithmetic
 E.2.1 Operations on Decimal Numbers

E.3 Bit Manipulations and Auxiliary Operations
Table of Contents

<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.3.1 Bit Shift and Rotate</td>
<td>723</td>
</tr>
<tr>
<td>E.3.2 Comparison Operations</td>
<td>724</td>
</tr>
<tr>
<td>E.3.3 Other Support Operations</td>
<td>724</td>
</tr>
<tr>
<td>E.4 Unsigned Binary Arithmetic</td>
<td>725</td>
</tr>
<tr>
<td>E.4.1 Multi-Byte Unsigned Addition</td>
<td>725</td>
</tr>
<tr>
<td>E.4.2 Unsigned Multiplication</td>
<td>726</td>
</tr>
<tr>
<td>E.4.3 Unsigned Division</td>
<td>728</td>
</tr>
<tr>
<td>E.5 Signed Binary Arithmetic</td>
<td>729</td>
</tr>
<tr>
<td>E.5.1 Overflow Detection in Signed Arithmetic</td>
<td>730</td>
</tr>
<tr>
<td>E.5.2 Sign Extension Operations</td>
<td>732</td>
</tr>
<tr>
<td>E.5.3 Multi-Byte Signed Operations</td>
<td>732</td>
</tr>
<tr>
<td>E.6 Data Format Conversions</td>
<td>733</td>
</tr>
<tr>
<td>E.6.1 BCD Digits to ASCII Decimal</td>
<td>733</td>
</tr>
<tr>
<td>E.6.2 Unsigned Binary to ASCII Decimal Digits</td>
<td>734</td>
</tr>
<tr>
<td>E.6.3 ASCII Decimal String to Unsigned Binary</td>
<td>734</td>
</tr>
<tr>
<td>E.6.4 Unsigned Binary to ASCII Hexadecimal Digits</td>
<td>736</td>
</tr>
<tr>
<td>E.6.5 Signed Numerical Conversions</td>
<td>736</td>
</tr>
</tbody>
</table>

Appendix F – Mid-Range Instruction Set

739

Appendix G – Printed Circuit Boards

777

<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Introduction</td>
<td>777</td>
</tr>
<tr>
<td>G.2 Printed Circuit Boards (PCBs)</td>
<td>777</td>
</tr>
<tr>
<td>G.3 Parts Lists</td>
<td>778</td>
</tr>
<tr>
<td>G.4 Building Your Own Circuit Boards</td>
<td>779</td>
</tr>
<tr>
<td>G.4.1 Tools and Materials</td>
<td>779</td>
</tr>
<tr>
<td>G.4.2 Single-Sided Demo Board</td>
<td>780</td>
</tr>
<tr>
<td>G.4.3 PCB Images for Demo Board</td>
<td>780</td>
</tr>
<tr>
<td>Drawing the Circuit Diagram</td>
<td>782</td>
</tr>
<tr>
<td>Printing the PCB Diagram</td>
<td>783</td>
</tr>
<tr>
<td>Selecting the Paper</td>
<td>783</td>
</tr>
<tr>
<td>Transferring the PCB Image</td>
<td>784</td>
</tr>
<tr>
<td>Etching the Board</td>
<td>784</td>
</tr>
<tr>
<td>Finishing the Board</td>
<td>784</td>
</tr>
<tr>
<td>Component-Side Image</td>
<td>784</td>
</tr>
<tr>
<td>G.5 Caveats</td>
<td>785</td>
</tr>
</tbody>
</table>

Appendix H – Additional Code

787

Index

863