HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

Haitham Abu-Rub
Texas A&M University at Qatar, Qatar

Atif Iqbal
Qatar University, Qatar and Aligarh Muslim University, India

Jaroslaw Guzinski
Gdansk University of Technology, Poland
Contents

Acknowledgment xiii

Biographies xv

Preface xvii

1 Introduction to High Performance Drives 1

1.1 Preliminary Remarks 1
1.2 General Overview of High Performance Drives 6
1.3 Challenges and Requirements for Electric Drives for Industrial Applications 10

1.3.1 Power Quality and LC Resonance Suppression 11
1.3.2 Inverter Switching Frequency 12
1.3.3 Motor Side Challenges 12
1.3.4 High dv/dt and Wave Reflection 12
1.3.5 Use of Inverter Output Filters 13

1.4 Organization of the Book 13

References 16

2 Mathematical and Simulation Models of AC Machines 19

2.1 Preliminary Remarks 19
2.2 DC Motors 19

2.2.1 Separately Excited DC Motor Control 20
2.2.2 Series DC Motor Control 22

2.3 Squirrel Cage Induction Motor 25

2.3.1 Space Vector Representation 25
2.3.2 Clarke Transformation (ABC to αβ) 26
2.3.3 Park Transformation (αβ to dq) 29
2.3.4 Per Unit Model of Induction Motor 30
2.3.5 Double Fed Induction Generator (DFIG) 32

2.4 Mathematical Model of Permanent Magnet Synchronous Motor 35

2.4.1 Motor Model in dq Rotating Frame 36
2.4.2 Example of Motor Parameters for Simulation 38
2.4.3 PMSM Model in Per Unit System 38
2.4.4 PMSM Model in α–β (x–y)-Axis 40

2.5 Problems 42

References 42
3 Pulse Width Modulation of Power Electronic DC-AC Converter

3.1 Preliminary Remarks 45
3.2 Classification of PWM Schemes for Voltage Source Inverters 46
3.3 Pulse Width Modulated Inverters
 3.3.1 Single-Phase Half-bridge Inverters 46
 3.3.2 Single-Phase Full-bridge Inverters 54
3.4 Three-phase PWM Voltage Source Inverter
 3.4.1 Carrier-based Sinusoidal PWM 64
 3.4.2 Third-harmonic Injection Carrier-based PWM 67
 3.4.3 Matlab/Simulink Model for Third Harmonic Injection PWM 68
 3.4.4 Carrier-based PWM with Offset Addition 69
 3.4.5 Space Vector PWM 72
 3.4.6 Discontinuous Space Vector PWM 77
 3.4.7 Matlab/Simulink Model for Space Vector PWM 78
 3.4.8 Space Vector PWM in Over-modulation Region 90
 3.4.9 Matlab/Simulink Model to Implement Space Vector PWM in Over-modulation Regions 96
 3.4.10 Harmonic Analysis 96
 3.4.11 Artificial Neural Network-based PWM 96
 3.4.12 Matlab/Simulink Model of Implementing ANN-based SVPWM 100
3.5 Relationship between Carrier-based PWM and SVPWM 100
 3.5.1 Modulating Signals and Space Vectors 102
 3.5.2 Relationship between Line-to-line Voltages and Space Vectors 104
 3.5.3 Modulating Signals and Space Vector Sectors 104
3.6 Multi-level Inverters 104
 3.6.1 Diode Clamped Multi-level Inverters 106
 3.6.2 Flying Capacitor Type Multi-level Inverter 109
 3.6.3 Cascaded H-Bridge Multi-level Inverter 112
3.7 Impedance Source or Z-source Inverter 117
 3.7.1 Circuit Analysis 120
 3.7.2 Carrier-based Simple Boost PWM Control of a Z-source Inverter 122
 3.7.3 Carrier-based Maximum Boost PWM Control of a Z-source Inverter 123
 3.7.4 Matlab/Simulink Model of Z-source Inverter 124
3.8 Quasi Impedance Source or qZSI Inverter 127
 3.8.1 Matlab/Simulink Model of qZ-source Inverter 129
3.9 Dead Time Effect in a Multi-phase Inverter 129
3.10 Summary 133
3.11 Problems 134
References 135

4 Field Oriented Control of AC Machines 139
4.1 Introduction 139
4.2 Induction Machines Control 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Control of Induction Motor using V/f Method</td>
<td>140</td>
</tr>
<tr>
<td>4.2.2 Vector Control of Induction Motor</td>
<td>143</td>
</tr>
<tr>
<td>4.2.3 Direct and Indirect Field Oriented Control</td>
<td>148</td>
</tr>
<tr>
<td>4.2.4 Rotor and Stator Flux Computation</td>
<td>149</td>
</tr>
<tr>
<td>4.2.5 Adaptive Flux Observers</td>
<td>150</td>
</tr>
<tr>
<td>4.2.6 Stator Flux Orientation</td>
<td>152</td>
</tr>
<tr>
<td>4.2.7 Field Weakening Control</td>
<td>152</td>
</tr>
<tr>
<td>4.3 Vector Control of Double Fed Induction Generator (DFIG)</td>
<td>153</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>153</td>
</tr>
<tr>
<td>4.3.2 Vector Control of DFIG Connected with the Grid (αβ Model)</td>
<td>155</td>
</tr>
<tr>
<td>4.3.3 Variables Transformation</td>
<td>156</td>
</tr>
<tr>
<td>4.3.4 Simulation Results</td>
<td>159</td>
</tr>
<tr>
<td>4.4 Control of Permanent Magnet Synchronous Machine</td>
<td>160</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>160</td>
</tr>
<tr>
<td>4.4.2 Vector Control of PMSM in dq Axis</td>
<td>160</td>
</tr>
<tr>
<td>4.4.3 Vector Control of PMSM in α-β Axis using PI Controller</td>
<td>164</td>
</tr>
<tr>
<td>4.4.4 Scalar Control of PMSM</td>
<td>166</td>
</tr>
<tr>
<td>Exercises</td>
<td>168</td>
</tr>
<tr>
<td>Additional Tasks</td>
<td>168</td>
</tr>
<tr>
<td>Possible Tasks for DFIG</td>
<td>168</td>
</tr>
<tr>
<td>Questions</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td>169</td>
</tr>
</tbody>
</table>

5 Direct Torque Control of AC Machines

5.1 Preliminary Remarks | 171 |
5.2 Basic Concept and Principles of DTC | 172 |
5.2.1 Basic Concept | 172 |
5.2.2 Principle of DTC | 173 |
5.3 DTC of Induction Motor with Ideal Constant Machine Model | 179 |
5.3.1 Ideal Constant Parameter Model of Induction Motors | 179 |
5.3.2 Direct Torque Control Scheme | 182 |
5.3.3 Speed Control with DTC | 184 |
5.3.4 Matlab/Simulink Simulation of Torque Control and Speed Control | 185 |
5.4 DTC of Induction Motor with Consideration of Iron Loss | 199 |
5.4.1 Induction Machine Model with Iron Loss Consideration | 199 |
5.4.2 Matlab/Simulink Simulation of the Effects of Iron Losses in Torque Control and Speed Control | 202 |
5.4.3 Modified Direct Torque Control Scheme for Iron Loss Compensation | 213 |
5.5 DTC of Induction Motor with Consideration of both Iron Losses and Magnetic Saturation | 217 |
5.5.1 Induction Machine Model with Consideration of Iron Losses and Magnetic Saturation | 217 |
5.5.2 Matlab/Simulink Simulation of Effects of both Iron Losses and Magnetic Saturation in Torque Control and Speed Control | 218 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6 Modified Direct Torque Control of Induction Machine with Constant</td>
<td>233</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
</tr>
<tr>
<td>5.7 Direct Torque Control of Sinusoidal Permanent Magnet Synchronous</td>
<td>233</td>
</tr>
<tr>
<td>Motors (SPMSM)</td>
<td></td>
</tr>
<tr>
<td>5.7.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>5.7.2 Mathematical Model of Sinusoidal PMSM</td>
<td>234</td>
</tr>
<tr>
<td>5.7.3 Direct Torque Control Scheme of PMSM</td>
<td>236</td>
</tr>
<tr>
<td>5.7.4 Matlab/Simulink Simulation of SPMSM with DTC</td>
<td>236</td>
</tr>
<tr>
<td>References</td>
<td>253</td>
</tr>
<tr>
<td>6 Non-Linear Control of Electrical Machines Using Non-Linear Feedback</td>
<td>255</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>255</td>
</tr>
<tr>
<td>6.2 Dynamic System Linearization using Non-Linear Feedback</td>
<td>256</td>
</tr>
<tr>
<td>6.3 Non-Linear Control of Separately Excited DC Motors</td>
<td>258</td>
</tr>
<tr>
<td>6.3.1 Matlab/Simulink Non-Linear Control Model</td>
<td>258</td>
</tr>
<tr>
<td>6.3.2 Non-Linear Control Systems</td>
<td>259</td>
</tr>
<tr>
<td>6.3.3 Speed Controller</td>
<td>260</td>
</tr>
<tr>
<td>6.3.4 Controller for Variable m</td>
<td>261</td>
</tr>
<tr>
<td>6.3.5 Field Current Controller</td>
<td>262</td>
</tr>
<tr>
<td>6.3.6 Simulation Results</td>
<td>262</td>
</tr>
<tr>
<td>6.4 Multiscalar model (MM) of Induction Motor</td>
<td>262</td>
</tr>
<tr>
<td>6.4.1 Multiscalar Variables</td>
<td>262</td>
</tr>
<tr>
<td>6.4.2 Non-Linear Linearization of Induction Motor Fed by Voltage</td>
<td>264</td>
</tr>
<tr>
<td>Controlled VSI</td>
<td></td>
</tr>
<tr>
<td>6.4.3 Design of System Control</td>
<td>266</td>
</tr>
<tr>
<td>6.4.4 Non-Linear Linearization of Induction Motor Fed by Current</td>
<td>267</td>
</tr>
<tr>
<td>Controlled VSI</td>
<td></td>
</tr>
<tr>
<td>6.4.5 Stator Oriented Non-Linear Control System (based on Ψ_s, i_s)</td>
<td>270</td>
</tr>
<tr>
<td>6.4.6 Rotor-Stator Fluxes-based Model</td>
<td>271</td>
</tr>
<tr>
<td>6.4.7 Stator Oriented Multiscalar Model</td>
<td>272</td>
</tr>
<tr>
<td>6.4.8 Multiscalar Control of Induction Motor</td>
<td>274</td>
</tr>
<tr>
<td>6.4.9 Induction Motor Model</td>
<td>275</td>
</tr>
<tr>
<td>6.4.10 State Transformations</td>
<td>275</td>
</tr>
<tr>
<td>6.4.11 Decoupled IM Model</td>
<td>277</td>
</tr>
<tr>
<td>6.5 MM of Double Fed Induction Machine (DFIM)</td>
<td>278</td>
</tr>
<tr>
<td>6.6 Non-Linear Control of Permanent Magnet Synchronous Machine</td>
<td>281</td>
</tr>
<tr>
<td>6.6.1 Non-Linear Control of PMSM for a dq Motor Model</td>
<td>283</td>
</tr>
<tr>
<td>6.6.2 Non-Linear Vector Control of PMSM in α-β Axis</td>
<td>285</td>
</tr>
<tr>
<td>6.6.3 PMSM Model in α-β (x-y) Axis</td>
<td>285</td>
</tr>
<tr>
<td>6.6.4 Transformations</td>
<td>285</td>
</tr>
<tr>
<td>6.6.5 Control System</td>
<td>288</td>
</tr>
<tr>
<td>6.6.6 Simulation Results</td>
<td>288</td>
</tr>
<tr>
<td>6.7 Problems</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td>290</td>
</tr>
</tbody>
</table>
7 Five-Phase Induction Motor Drive System 293
 7.1 Preliminary Remarks 293
 7.2 Advantages and Applications of Multi-Phase Drives 294
 7.3 Modeling and Simulation of a Five-Phase Induction Motor Drive 295
 7.3.1 Five-Phase Induction Motor Model 295
 7.3.2 Five-Phase Two-Level Voltage Source Inverter Model 304
 7.3.3 PWM Schemes of a Five-Phase VSI 328
 7.4 Indirect Rotor Field Oriented Control of Five-Phase Induction Motor 344
 7.4.1 Matlab/Simulink Model of Field-Oriented Control of
 Five-Phase Induction Machine 347
 7.5 Field Oriented Control of Five-Phase Induction Motor with Current
 Control in the Synchronous Reference Frame 348
 7.6 Model Predictive Control (MPC) 352
 7.6.1 MPC Applied to a Five-Phase Two-Level VSI 354
 7.6.2 Matlab/Simulink of MPC for Five-Phase VSI 356
 7.6.3 Using Eleven Vectors with $\gamma = 0$ 356
 7.6.4 Using Eleven Vectors with $\gamma = 1$ 359
 7.7 Summary 359
 7.8 Problems 359
References 361

8 Sensorless Speed Control of AC Machines 365
 8.1 Preliminary Remarks 365
 8.2 Sensorless Control of Induction Motor 365
 8.2.1 Speed Estimation using Open Loop Model and Slip
 Computation 366
 8.2.2 Closed Loop Observers 366
 8.2.3 MRAS (Closed-loop) Speed Estimator 375
 8.2.4 The Use of Power Measurements 378
 8.3 Sensorless Control of PMSM 380
 8.3.1 Control system of PMSM 382
 8.3.2 Adaptive Backstepping Observer 383
 8.3.3 Model Reference Adaptive System for PMSM 385
 8.3.4 Simulation Results 388
 8.4 MRAS-based Sensorless Control of Five-Phase Induction Motor Drive 388
 8.4.1 MRAS-based Speed Estimator 389
 8.4.2 Simulation Results 396
References 396

9 Selected Problems of Induction Motor Drives with Voltage Inverter
and Inverter Output Filters 401
 9.1 Drives and Filters – Overview 401
 9.2 Three-Phase to Two-Phase Transformations 403
 9.3 Voltage and Current Common Mode Component 404
 9.3.1 Matlab/Simulink Model of Induction Motor Drive with
 PWM Inverter and Common Mode Voltage 405
9.4 Induction Motor Common Mode Circuit 408
9.5 Bearing Current Types and Reduction Methods 410
 9.5.1 Common Mode Choke 412
 9.5.2 Common Mode Transformers 414
 9.5.3 Common Mode Voltage Reduction by PWM Modifications 415
9.6 Inverter Output Filters 420
 9.6.1 Selected Structures of Inverter Output Filters 420
 9.6.2 Inverter Output Filters Design 425
 9.6.3 Motor Choke 435
 9.6.4 Matlab/Simulink Model of Induction Motor Drive with
 PWM Inverter and Differential Mode (Normal Mode)
 LC Filter 437
9.7 Estimation Problems in the Drive with Filters 440
 9.7.1 Introduction 440
 9.7.2 Speed Observer with Disturbances Model 442
 9.7.3 Simple Observer based on Motor Stator Models 445
9.8 Motor Control Problems in the Drive with Filters 447
 9.8.1 Introduction 447
 9.8.2 Field Oriented Control 449
 9.8.3 Non-Linear Field Oriented Control 453
 9.8.4 Non-Linear Multiscalar Control 457
9.9 Predictive Current Control in the Drive System with Output Filter 461
 9.9.1 Control System 461
 9.9.2 Predictive Current Controller 464
 9.9.3 EMF Estimation Technique 467
9.10 Problems 471
9.11 Questions 475
References 475

Index 479