Inverse Problems and Optimal Design in Electricity and Magnetism

P. Neittaanmäki
Department of Mathematics, University of Jyväskylä

M. Rudnicki
Institute of Electrical Engineering, Warsaw

and

A. Savini
Department of Electrical Engineering, University of Pavia
Contents

I Mathematical methodology
1. Mathematical preliminaries 3
 1.1. Basic notation 3
 1.2. Vectors, matrices, norms 4
 1.2.1. Matrices 4
 1.2.2. Independence, orthogonality, subspaces 6
 1.2.3. Special matrices 7
 1.2.4. Block matrices 8
 1.2.5. Vector norms 9
 1.2.6. Matrix norms 11
 1.3. Functions 12
 1.4. Domains 13
 1.5. Function spaces 14
 1.6. Classical integral formulae 21
 1.7. References 23
2. Boundary-value problems 24
 2.1. Variational methods for elliptic problems 24
 2.1.1. Classical formulation 24
 2.1.2. Variational formulation 25
 2.2. Integral-equation formulation for partial differential equations 33
 2.3. References 36
3. Numerical methods for boundary-value problems 38
 3.1. Introduction 38
 3.2. Finite-element method for elliptic problems 42
 3.2.1. Triangulation of the domain 42
 3.2.2. Finite-element equations 45
 3.3. Boundary-element method 51
 3.4. References 54
4. Regularization 56
 4.1. Ill-posed problems 56
 4.2. Regularization schemes 57
 4.3. Discrepancy principle 59
 4.4. Linear integral equations of the first kind 61
 4.5. Tikhonov regularization 62
 4.6. Truncated singular-value decomposition 66
 4.7. Regularization parameter 67
4.8. Solving Fredholm integral equations of the first kind using regularization 69
4.9. References 72
5. Numerical methods for systems of equations 76
5.1. Solving linear systems 76
 5.1.1. Elementary iterative methods 77
 5.1.2. The conjugate gradient method 78
 5.1.3. The preconditioned biconjugate gradient method 79
5.2. Solving nonlinear systems 80
 5.2.1. Slope methods 80
 5.2.2. Newton–Raphson method 82
 5.2.3. Powell's hybrid method 83
 5.2.4. Brown–Brent methods 84
5.3. References 87
6. Unconstrained optimization 89
 6.1. Optimality conditions 94
 6.2. Search methods 100
 6.3. Steepest-descent method 102
 6.4. Conjugate gradient method 103
 6.5. Newton method with a linear search 105
 6.6. Quasi-Newton or variable-metric method 107
 6.7. Polytope method 111
 6.8. Stochastic optimization 115
 6.8.1. Random-search methods 115
 6.8.2. Genetic algorithms 116
 6.8.3. Simulated annealing 116
 6.8.4. Simulated annealing optimization code 119
 6.9. Neural computing 123
 6.9.1. Introduction 123
 6.9.2. Preliminaries 123
 6.9.3. Multilayer feedforward networks 124
 6.9.4. Optimization by neural networks 128
 6.10. References 131
7. Constrained optimization 137
 7.1. Linear programming 137
 7.2. Optimality (Karush–Kuhn–Tucker) conditions 139
 7.2.1. Smooth case 139
 7.2.2. Nonsmooth case 141
 7.3. Sequential linear programming 142
 7.4. Sequential quadratic programming 147
 7.5. Nonsmooth and multicriteria optimization 151
 7.5.1. Smooth multicriteria optimization 152
 7.5.2. Unconstrained convex optimization 152
 7.5.3. Unconstrained nonconvex optimization 153
 7.5.4. Constrained optimization 154

Contents

7.5.5. Multicriteria optimization 154
7.5.6. Proximal bundle nonsmooth optimization code 155
7.6. Concluding remarks 158
7.7. References 159

8. Linear least-squares 161
8.1. Overdetermined systems of equations 161
8.2. Normal equations and ill-conditioning 163
8.3. Singular-value decomposition 164
8.4. Constrained linear least-squares 167
8.5. References 170

9. Nonlinear least-squares 172
9.2. Levenberg–Marquardt method 175
9.3. Powell’s hybrid method 178
9.4. Derivative-free methods 179
9.5. Large-residual problems 180
9.6. Trust-region method 181
9.7. Constrained nonlinear least-squares 183
9.8. References 185

II Fundamentals of electromagnetism

10. Introduction 191
11. Maxwell’s equations 192
 11.1. Basic equations 192
 11.2. Interface conditions 195
 11.3. References 197
12. Potential equations in electricity and magnetism 198
 12.1. Laplace’s equation 198
 12.2. Poisson’s equation 200
 12.3. Nonlinear magnetostatic fields in \(\mathbb{R}^2 \) 201
 12.4. Quasistatic linear electromagnetic fields 202
 12.5. Electromagnetic fields in linear isotropic media 205
 12.6. Further elements of electromagnetic theory 207
 12.6.1. Energy, power and forces 207
 12.6.2. Coulomb’s law and the Biot–Savart law 208
 12.7. References 209
13. Numerical methods in electromagnetism 210
 13.1. Introduction 210
 13.2. Approximation of the static case 210
 13.2.1. Least-squares variational methods in electromagnetism 210
 13.2.2. Least-squares finite-element methods for electric fields 212
 13.2.3. The nonlinear case 213
III Inverse problems and optimal design in electromagnetic applications

14. Inverse problems and optimal design
 14.1. Introduction
 14.2. Inverse electromagnetic problems: methodology
 14.3. Optimal design techniques for solving inverse electromagnetic problems
 14.3.1. Deterministic optimization methods (DOMs)
 14.3.2. Stochastic optimization methods (SOMs)
 14.4. References

15. Synthesis of sources
 15.1. Synthesis of the magnetic field in a solenoid
 15.2. Synthesis of the magnetic field on a solenoid axis
 15.3. Synthesis of an electric field due to a point charge
 15.4. Synthesis of an electric field due to a surface charge
 15.4.1. Parallel-plate capacitors
 15.4.2. Thin conducting plate
 15.5. Synthesis of a magnetic field in a wire system
 15.6. Synthesis of electromagnets
 15.7. References

16. Synthesis of boundary conditions
 16.1. Synthesis of the electric field in a finite domain
 16.2. Synthesis of an electric field due to a boundary potential
 16.3. Synthesis of the magnetic field due to a boundary current
 16.4. References

17. Synthesis of material properties
 17.1. Synthesis of permittivity
 17.2. References

18. Optimal shape synthesis
 18.1. Optimal shape design of a solenoid
 18.2. Optimal shape design of the shim coil of a solenoid
 18.3. Optimal shape design of an electromagnet
 18.4. Optimal shape design of an air-filled capacitor
 18.5. Optimal shape design of a pole profile in a linear H-shaped magnet
18.6. Optimal shape design of a pole profile in a nonlinear H-shaped magnet 291
18.7. References 297

19. Remarks on inverse and design problems 298
19.1. Survey of solved problems 298
19.2. References 304

20. Artificial neural networks (ANNs) for inverse electromagnetic modelling 309
20.1. Remarks on artificial neural networks 309
20.2. References 312

IV Implementation of the FEM, design-sensitivity and shape design procedures 315
21. Introduction 316
22. Implementation of the finite-element method 316
22.1. Linear elliptic boundary-value problems 316
22.1.1. Discretization of the problem 316
22.1.2. Isoparametric elements 317
22.1.3. Data structures 320
22.1.4. General program structure 322
22.2. A nonlinear FEM solver using a quasi-Newton method 322
22.3. References 324
23. Finite-element design-sensitivity analysis 325
23.1. Setting of the optimal shape design problem 325
23.2. Design-sensitivity analysis for linear problems 327
23.3. Sensitivity for the nonlinear potential equation 330
23.4. Implementation of optimal shape design procedures 333
23.5. Automatic differentiation of computer programs 335
23.6. References 338
24. Subroutine libraries 339
24.1. General-purpose software libraries 339
24.2. Partial differential equations and electromagnetic software 341
24.3. Software libraries for nonsmooth and multicriteria optimization 348
24.4. Artificial intelligence tools and software for optimal shape design 349
24.5. References 349

Author index 355
Subject index 359