PREFACE

CHAPTER 1 BASICS OF MECHANISMS 1

Introduction 2
Physical Principles 2
 Efficiency of Machines 2
 Mechanical Advantage 2
 Velocity Ratio 3
Inclined Plane 3
Pulley Systems 3
Screw-Type Jack 4
Levers and Mechanisms 4
 Levers 4
 Winches, Windlasses, and Capstans 5
Linkages 5
 Simple Planar Linkages 5
 Specialized Linkages 6
 Straight-Line Generators 7
 Rotary/Linear Linkages 8
Specialized Mechanisms 9
Gears and Gearing 10
 Simple Gear Trains 11
 Compound Gear Trains 11
 Gear Classification 11
 Practical Gear Configurations 12
 Gear Tooth Geometry 13
 Gear Terminology 13
 Gear Dynamics Terminology 13
Pulleys and Belts 14
Sprockets and Chains 14
Cam Mechanisms 14
 Classification of Cam Mechanisms 15
 Cam Terminology 17
Clutch Mechanisms 17
 Externally Controlled Friction Clutches 17
 Externally Controlled Positive Clutches 17
 Internally Controlled Clutches 18
Glossary of Common Mechanical Terms 18

CHAPTER 2 MOTION CONTROL SYSTEMS 21

Motion Control Systems Overview 22
Glossary of Motion Control Terms 28
Mechanical Components Form Specialized Motion-Control Systems 29
Servomotors, Stepper Motors, and Actuators for Motion Control 30
Servosystem Feedback Sensors 38
Solenoids and Their Applications 45
CHAPTER 3 STATIONARY AND MOBILE ROBOTS

Introduction to Robots
The Robot Defined
Stationary Autonomous Industrial Robots
Some Robot History
The Worldwide Robot Market
Industrial Robots
Industrial Robot Advantages
Industrial Robot Characteristics
Industrial Robot Geometry
Four Different ABB Industrial Robots
IRB 2400
IRB 6400RF
IRB 6640
IRB 7600
Autonomous and Semiautonomous Mobile Robots
Options for Communication and Control
Land-based Mobile Robots Can Scout and Retrieve
Submersible Mobile Robots Can Search and Explore
Robotic Aircraft (Drones) Can Search and Destroy
Planetary Exploration Robots Can Examine and Report
Laboratory/Scientific Robots Can Mimic Human Behavior
Commercial Robots Can Deliver and Retrieve Goods
Consumer Robots Clean Floors and Mow Lawns
Some Robots Entertain or Educate
Seven Mobile Autonomous and Semiautonomous Robots
Two Robots Have Explored Mars for Six Years
This Robot Will Carry on the Work of Spirit and Opportunity
This Robot Responds to Civil Emergencies
Robot Delivers Hospital Supplies
A Military Remotely-Piloted Aircraft Can Observe and Attack the Enemy
Submarine Robot Searches for Underwater Mines and Obstructions
This System Offers Less Intrusive Surgery and Faster Recovery
Glossary of Robotic Terms
Modified Four-Limbed Robot Is a Better Climber
Six-Legged Robot Crawls on Mesh in Lunar Gravity
Two Robots Anchor Another Traversing Steep Slopes
Six-Legged Robot Can Be Steered While Hopping

CHAPTER 4 MECHANISMS FOR RENEWABLE POWER GENERATION

Overview of Renewable Energy Sources
Nuclear: The Unlikely Prime Renewable
Alternative Renewable Energy Sources
Baseload and Baseload Demand Power Plants
Windmills: Early Renewable Power Sources
Wind Turbines: Descendents of Windmills
Where Are Wind Turbines Located?
Concentrating Solar Thermal (CST) Systems
Parabolic Trough Mirror Solar Thermal (CST) Plants
Power-Tower Solar Thermal (CST) Plants
Linear Fresnel Reflector Thermal (CST) Plants
Parabolic Dish Stirling Solar Thermal (CST) Plants
How a Stirling Engine Works
The Outlook for CST Renewable Energy
CHAPTER 7 CAM, GENEVA, AND RATCHET DRIVES AND MECHANISMS

Cam-Controlled Planetary Gear System 180
Five Cam-Stroke-Amplifying Mechanisms 181
Cam-Curve-Generating Mechanisms 182
Fifteen Different Cam Mechanisms 188
Ten Special-Function Cams 190
Twenty Geneva Drives 192
Six Modified Geneva Drives 196
Kinematics of External Geneva Wheels 198
Kinematics of Internal Geneva Wheels 201
Star Wheels Challenge Geneva Drives for Indexing 205
Ratchet-Tooth Speed-Change Drive 208
Modified Ratchet Drive 208
Eight Toothless Ratchets 209
Analysis of Ratchet Wheels 210

CHAPTER 8 CLUTCHES AND BRAKES

Twelve Clutches with External or Internal Control 212
Spring-Wrapped Clutch Slips at Preset Torque 214
Controlled-Slip Expands Spring Clutch Applications 216
Spring Bands Improve Overrunning Clutch 217
Slip and Bidirectional Clutches Combine to Control Torque 218
Slip Clutches Serve Many Design Functions 219
Walking Pressure Plate Delivers Constant Torque 220
Seven Overrunning Clutches 221
One-Way Clutch Has Spring-Loaded Pins and Sprags 222
Roller Clutch Provides Two Output Speeds 222
Seven Overriding Clutches 223
Ten Applications for Overrunning Clutches 225
Eight Sprag Clutch Applications 227
Six Small Clutches Perform Precise Tasks 229
Twelve Different Station Clutches 231
Twelve Applications for Electromagnetic Clutches and Brakes 234

CHAPTER 9 LATCHING, FASTENING, AND CLAMPING DEVICES AND MECHANISMS

Sixteen Latch, Toggle, and Trigger Devices 238
Fourteen Snap-Action Devices 240
Remote Controlled Latch 244
Toggle Fastener Inserts, Locks, and Releases Easily 245
Grapple Frees Loads Automatically 245
Quick-Release Lock Pin Has a Ball Detent 246
Automatic Brake Locks Hoist When Driving Torque Ceases 246
Lift-Tong Mechanism Firmly Grips Objects 247
Perpendicular-Force Latch 247
Two Quick-Release Mechanisms 248
Shape-Memory Alloy Devices Release Latches 249
Ring Springs Clamp Platform Elevator into Position 250
Cammed Jaws in Hydraulic Cylinder Grip Sheet Metal 250
Quick-Acting Clamps for Machines and Fixtures 251
Nine Friction Clamping Devices 253
Detents for Stopping Mechanical Movements 255
Twelve Clamping Methods for Aligning Adjustable Parts 257
Spring-Loaded Chucks and Holding Fixtures 259
CHAPTER 14 PACKAGING, CONVEYING, HANDLING, AND SAFETY MECHANISMS AND MACHINES
Fifteen Devices That Sort, Feed, or Weigh
Seven Cutting Mechanisms
Two Flipping Mechanisms
One Vibrating Mechanism
Seven Basic Parts Selectors
Eleven Parts-Handling Mechanisms
Seven Automatic-Feed Mechanisms
Fifteen Conveyor Systems for Production Machines
Seven Traversing Mechanisms for Winding Machines
Vacuum Pickup for Positioning Pills
Machine Applies Labels from Stacks or Rollers
Twenty High-Speed Machines for Applying Adhesives
Twenty-Four Automatic Mechanisms for Stopping Unsafe Machines
Six Automatic Electrical Circuits for Stopping Textile Machines
Six Automatic Mechanisms for Assuring Safe Machine Operation

CHAPTER 15 TORQUE, SPEED, TENSION, AND LIMIT CONTROL SYSTEMS
Applications of the Differential Winch to Control Systems
Six Ways to Prevent Reverse Rotation
Caliper Brakes Keep Paper Tension in Web Presses
Control System for Paper Cutting
Warning System Prevents Overloading of Boom
Lever System Monitors Cable Tension
Eight Torque-Limiters Protect Light-Duty Drives
Thirteen Limiters Prevent Overloading
Seven Ways to Limit Shaft Rotation
Mechanical Systems for Controlling Tension and Speed
Nine Drives for Controlling Tension
Limit Switches in Machinery
Nine Automatic Speed Governors
Eight Speed Control Devices for Mechanisms
Cable-Braking System Limits Descent Rate

CHAPTER 16 INSTRUMENTS AND CONTROLS: PNEUMATIC, HYDRAULIC, ELECTRIC, AND ELECTRONIC
Twenty-Four Mechanisms Actuated by Pneumatic or Hydraulic Cylinders
Foot-Controlled Braking System
Fifteen Tasks for Pneumatic Power
Ten Applications for Metal Diaphragms and Capsules
Nine Differential Transformer Sensors
High-Speed Electronic Counters
Applications for Permanent Magnets
Nine Electrically Driven Hammers
Sixteen Thermostatic Instruments and Controls
Eight Temperature-Regulating Controls
Seven Photoelectric Controls