Edited by Claus Daniel and Jürgen O. Besenhard

Handbook of Battery Materials

Second, Completely Revised and Enlarged Edition

WILEY-VCH Verlag GmbH & Co. KGaA
Contents

Preface XXVII
List of Contributors XXIX

Part I Fundamentals and General Aspects of Electrochemical Energy Storage 1

1 Thermodynamics and Mechanistics 3
Karsten Pinkwart and Jens Tübke
1.1 Electrochemical Power Sources 3
1.2 Electrochemical Fundamentals 6
1.2.1 Electrochemical Cell 6
1.2.2 Electrochemical Series of Metals 9
1.2.3 Discharging 11
1.2.4 Charging 12
1.3 Thermodynamics 13
1.3.1 Electrode Processes at Equilibrium 13
1.3.2 Reaction Free Energy ΔG and Equilibrium Cell Voltage Δe_{00} 14
1.3.3 Concentration Dependence of the Equilibrium Cell Voltage 15
1.3.4 Temperature Dependence of the Equilibrium Cell Voltage 16
1.3.5 Pressure Dependence of the Equilibrium Cell Voltage 18
1.3.6 Overpotential of Half Cells and Internal Resistance 19
1.4 Criteria for the Judgment of Batteries 21
1.4.1 Terminal Voltage 21
1.4.2 Current–Voltage Diagram 21
1.4.3 Discharge Characteristic 22
1.4.4 Characteristic Line of Charge 22
1.4.5 Overcharge Reactions 23
1.4.6 Coulometric Efficiency and Energy Efficiency 24
1.4.7 Cycle Life and Shelf Life 24
1.4.8 Specific Energy and Energy Density 25
1.4.9 Safety 25
1.4.10 Costs per Stored Watt Hour 26
References 26
2 Practical Batteries 27
Koji Nishio and Nobuhiro Furukawa
2.1 Introduction 27
2.2 Alkaline-Manganese Batteries 27
2.3 Nickel–Cadmium Batteries 30
2.4 Nickel–MH Batteries 36
2.5 Lithium Primary Batteries 43
2.5.1 Lithium–Manganese Dioxide Batteries 43
2.5.2 Lithium–Carbon Monofluoride Batteries 52
2.5.3 Lithium–Thionyl Chloride Batteries 54
2.6 Coin-Type Lithium Secondary Batteries 55
2.6.1 Secondary Lithium–Manganese Dioxide Batteries 55
2.6.2 Lithium–Vanadium Oxide Secondary Batteries 60
2.6.3 Lithium–Polyaniline Batteries 62
2.6.4 Secondary Lithium–Carbon Batteries 62
2.6.5 Secondary Li-LGH–Vanadium Oxide Batteries 63
2.6.6 Secondary Lithium–Polyacene Batteries 64
2.6.7 Secondary Niobium Oxide–Vanadium Oxide Batteries 64
2.6.8 Secondary Titanium Oxide–Manganese Oxide Batteries 65
2.7 Lithium-Ion Batteries 66
2.7.1 Positive Electrode Materials 66
2.7.2 Negative Electrode Materials 70
2.7.3 Battery Performances 75
2.8 Secondary Lithium Batteries with Metal Anodes 78
References 80
Further Reading 84

Part II Materials for Aqueous Electrolyte Batteries 87

3 Structural Chemistry of Manganese Dioxide and Related Compounds 89
Jörg H. Albering
3.1 Introduction 89
3.2 Tunnel Structures 90
3.2.1 β-MnO$_2$ 90
3.2.2 Ramsdellite 91
3.2.3 γ-MnO$_2$ and ε-MnO$_2$ 93
3.2.4 α-MnO$_2$ 100
3.2.5 Romanèchite, Todorokite, and Related Compounds 102
3.3 Layer Structures 104
3.3.1 Mn$_3$O$_8$ and Similar Compounds 105
3.3.2 Lithiophorite 106
3.3.3 Chalcophanite 108
3.3.4 δ-MnO$_2$ Materials 109
3.3.5 10 Å Phyllosilicates of the Buserite Type 114
3.4 Reduced Manganese Oxides 116
3.4.1 Compounds of Composition MnOOH 116
3.4.1.1 Manganite (γ-MnOOH) 116
3.4.1.2 Groutite (α-MnOOH) 116
3.4.1.3 β-MnOOH 118
3.4.1.4 Feitknechtite β-MnOOH 118
3.4.2 Spinel-Type Compounds Mn₃O₄ and γ-Mn₂O₃ 119
3.4.3 Pyrochroite, Mn(OH)₂ 119
3.5 Conclusion 120
References 120
Further Reading 122

4 Electrochemistry of Manganese Oxides 125
Akiya Kozawa, Kohei Yamamoto, and Masaki Yoshio
4.1 Introduction 125
4.2 Electrochemical Properties of EMD 126
4.2.1 Discharge Curves and Electrochemical Reactions 126
4.2.2 Modification of Discharge Behavior of EMD with Bi(OH)₃ 128
4.2.3 Factors which Influence MnO₂ Potential 129
4.2.3.1 Surface Condition of MnO₂ 129
4.2.3.2 Standard Potential of MnO₂ in 1 mol L⁻¹ KOH 131
4.2.4 Three Types of Polarization for MnO₂ 131
4.2.5 Discharge Tests for Battery Materials 134
4.3 Physical Properties and Chemical Composition of EMD 137
4.3.1 Cross-Section of the Pores 137
4.3.2 Closed Pores 139
4.3.3 Effective Volume Measurement 140
4.4 Conversion of EMD to LiMnO₂ or LiMn₂O₄ for Rechargeable Li Batteries 140
4.4.1 Melt-Impregnation (M-I) Method for EMD 142
4.4.2 Preparation of Li₀.₃MnO₂ from EMD 143
4.4.3 Preparation of LiMn₂O₄ from EMD 145
4.5 Discharge Curves of EMD Alkaline Cells (AA and AAA Cells) 147
References 147
Further Reading 148

5 Nickel Hydroxides 149
James McBreen
5.1 Introduction 149
5.2 Nickel Hydroxide Battery Electrodes 150
5.3 Solid-State Chemistry of Nickel Hydroxides 151
5.3.1 Hydrous Nickel Oxides 151
5.3.1.1 β-Ni(OH)₂ 151
5.3.1.2 α-Ni(OH)₂ 154
5.3.1.3 β-NiOOH 157
Contents

5.3.1.4 \(\gamma\)-NiOOH 158
5.3.1.5 Relevance of Model Compounds to Electrode Materials 158
5.3.2 Pyroaurite-Type Nickel Hydroxides 159
5.4 Electrochemical Reactions 161
5.4.1 Overall Reaction and Thermodynamics of the Ni(OH)\textsubscript{2}/NiOOH Couple 161
5.4.2 Nature of the Ni(OH)\textsubscript{2}/NiOOH Reaction 162
5.4.3 Nickel Oxidation State 164
5.4.4 Oxygen Evolution 164
5.4.5 Hydrogen Oxidation 164
References 165

6 Lead Oxides 169
Dietrich Berndt
6.1 Introduction 169
6.2 Lead/Oxygen Compounds 170
6.2.1 Lead Oxide (PbO) 170
6.2.2 Minium (Pb\textsubscript{3}O\textsubscript{4}) 171
6.2.3 Lead Dioxide (PbO\textsubscript{2}) 171
6.2.4 Nonstoichiometric PbO\textsubscript{x} Phases 172
6.2.5 Basic Sulfates 172
6.2.6 Physical and Chemical Properties 172
6.3 The Thermodynamic Situation 173
6.3.1 Water Decomposition 174
6.3.2 Oxidation of Lead 175
6.3.3 The Thermodynamic Situation in Lead–Acid Batteries 177
6.3.4 Thermodynamic Data 180
6.4 PbO\textsubscript{2} as Active Material in Lead–Acid Batteries 181
6.4.1 Plante Plates 182
6.4.2 Pasted Plates 184
6.4.2.1 Manufacture of the Active Material 184
6.4.2.2 Tank Formation 187
6.4.2.3 Container Formation 187
6.4.3 Tubular Plates 187
6.5 Passivation of Lead by Its Oxides 189
6.5.1 Disintegration of the Oxide Layer at Open-Circuit Voltage 191
6.5.2 Charge Preservation in Negative Electrodes by a PbO Layer 192
6.6 Ageing Effects 192
6.6.1 The Influence of Antimony, Tin, and Phosphoric Acid 193
References 194
Further Reading 196

7 Bromine-Storage Materials 197
Christoph Fahjan and Josef Drobits
7.1 Introduction 197
7.2 Possibilities for Bromine Storage 199
 7.2.1 General Aspects 199
 7.2.2 Quaternary Ammonium-Polybromide Complexes 200
7.3 Physical Properties of the Bromine Storage Phase 204
 7.3.1 Conductivity 204
 7.3.2 Viscosity and Specific Weight 207
 7.3.3 Diffusion Coefficients 208
 7.3.4 State of Aggregation 209
7.4 Analytical Study of a Battery Charge Cycle 210
7.5 Safety, Physiological Aspects, and Recycling 212
 7.5.1 Safety 212
 7.5.2 Physiological Aspects 214
 7.5.3 Recycling 214
References 214

8 Metallic Negatives 219
 Leo Binder
 8.1 Introduction 219
 8.2 Overview 219
 8.3 Battery Anodes ('Negatives') 220
 8.3.1 Aluminum (Al) 220
 8.3.2 Cadmium (Cd) 221
 8.3.3 Iron (Fe) 222
 8.3.4 Lead (Pb) 223
 8.3.5 Lithium (Li) 224
 8.3.6 Magnesium (Mg) 224
 8.3.7 Zinc (Zn) 225
 8.3.7.1 Zinc Electrodes for 'Acidic' (Neutral) Primaries 226
 8.3.7.2 Zinc Electrodes for Alkaline Primaries 226
 8.3.7.3 Zinc Electrodes for Alkaline Storage Batteries 229
 8.3.7.4 Zinc Electrodes for Alkaline 'Low-Cost' Reusables 230
 8.3.7.5 Zinc Electrodes for Zinc-Flow Batteries 232
 8.3.7.6 Zinc Electrodes for Printed Thin-Layer Batteries 233
References 234

9 Metal Hydride Electrodes 239
 James J. Reilly
 9.1 Introduction 239
 9.2 Theory and Basic Principles 239
 9.2.1 Thermodynamics 240
 9.2.2 Electronic Properties 242
 9.2.3 Reaction Rules and Predictive Theories 243
 9.3 Metal Hydride–Nickel Batteries 244
 9.3.1 Alloy Activation 245
 9.3.2 AB₃ Electrodes 246
11.2.1.2 Starter Battery Separators 294
11.2.1.3 Industrial Battery Separators 296
11.2.1.3.1 Stationary Battery Separators 296
11.2.1.3.2 Traction Battery Separators 298
11.2.1.3.3 Electrical Vehicle Battery Separators 299
11.2.2 Separators for Starter Batteries 300
11.2.2.1 Polyethylene Pocket Separators 300
11.2.2.1.1 Production Process 300
11.2.2.1.2 Mixing and Extrusion 301
11.2.2.1.3 Properties 301
11.2.2.1.4 Profiles 304
11.2.2.1.5 Product Comparison 306
11.2.2.2 Leaf Separators 306
11.2.2.2.1 Sintered PVC Separators 307
11.2.2.2.2 Cellulosic Separators 309
11.2.2.2.3 Glass Fiber Leaf Separators 310
11.2.2.2.4 Leaf Separators with Attached Glass Mat 311
11.2.2.2.5 'Japanese' Separators 311
11.2.2.2.6 Microfiber Glass Separators 312
11.2.2.3 Comparative Evaluation of Starter Battery Separators 313
11.2.3 Separators for Industrial Batteries 316
11.2.3.1 Separators for Traction Batteries 316
11.2.3.1.1 Polyethylene Separators 316
11.2.3.1.2 Rubber Separators 319
11.2.3.1.3 Phenol–Formaldehyde–Resorcinol Separators (DARAK 5000) 320
11.2.3.1.4 Microporous PVC Separators 320
11.2.3.1.5 Comparative Evaluation of the Traction Battery Separators 321
11.2.3.2 Separators for Open Stationary Batteries 321
11.2.3.2.1 Polyethylene Separators 322
11.2.3.2.2 Phenol–Formaldehyde Resin–Resorcinol Separators (DARAK 2000/5005) 322
11.2.3.2.3 Microporous PVC Separators 322
11.2.3.2.4 Sintered PVC Separators 322
11.2.3.2.5 Comparative Evaluation of Separators for Open Stationary Batteries 323
11.2.3.3 Separators for Valve Regulated Lead–Acid (VRLA) Batteries 324
11.2.3.3.1 Batteries with Absorptive Glass Mat 324
11.2.3.3.2 Batteries with Gelled Electrolyte 325
11.3 Separators for Alkaline Storage Batteries 328
11.3.1 General 328
11.3.2 Primary Cells 329
11.3.3 Nickel Systems 329
11.3.3.1 Nickel–Cadmium Batteries 329
11.3.3.1.1 Vented Construction 329
11.3.3.1.2 Sealed Construction 330
11.3.3.2 Nickel-Metal Hydride Batteries 331
11.3.4 Zinc Systems 331
11.3.4.1 Nickel–Zinc Storage Batteries 331
11.3.4.2 Zinc–Manganese Dioxide Secondary Cells 332
11.3.4.3 Zinc–Air Batteries 332
11.3.4.4 Zinc-Bromine Batteries 333
11.3.4.5 Zinc–Silver Oxide Storage Batteries 333
11.3.5 Separator Materials for Alkaline Batteries 334
Acknowledgments 337
References 337

Part III Materials for Alkali Metal Batteries 341

12 Lithium Intercalation Cathode Materials for Lithium-Ion Batteries 343
Arumugam Manthiram and Theivanayagam Muraliganth
12.1 Introduction 343
12.2 History of Lithium-Ion Batteries 343
12.3 Lithium-Ion Battery Electrodes 345
12.4 Layered Metal Oxide Cathodes 347
12.5 Layered LiCoO$_2$ 348
12.6 Layered LiNiO$_2$ 350
12.7 Layered LiMnO$_2$ 352
12.8 Li[Li$_{1/3}$Mn$_{2/3}$]O$_2$ - LiMO$_2$ Solid Solutions 352
12.9 Other Layered Oxides 354
12.10 Spinel Oxide Cathodes 355
12.11 Spinel LiMn$_2$O$_4$ 355
12.12 5 V Spinel Oxides 359
12.13 Other Spinel Oxides 361
12.14 Polyanion-containing Cathodes 362
12.15 Phospho-Olivine LiMPO$_4$ 363
12.16 Silicate Li$_2$MSiO$_4$ 369
12.17 Other Polyanion-containing Cathodes 370
12.18 Summary 370
Acknowledgments 371
References 371

13 Rechargeable Lithium Anodes 377
Jun-ichi Yamaki and Shin-ichi Tobishima
13.1 Introduction 377
13.2 Surface of Uncycled Lithium Foil 379
13.3 Surface of Lithium Coupled with Electrolytes 380
13.4 Cycling Efficiency of Lithium Anode 381
13.4.1 Measurement Methods 381
13.4.2 Reasons for the Decrease in Lithium Cycling Efficiency 382
13.5 Morphology of Deposited Lithium 382
13.6 The Amount of Dead Lithium and Cell Performance 385
13.7 Improvement in the Cycling Efficiency of a Lithium Anode 385
13.7.1 Electrolytes 386
13.7.2 Electrolyte Additives 387
13.7.2.1 Stable Additives Limiting Chemical Reaction between the Electrolyte and Lithium 387
13.7.2.2 Additives Modifying the State of Solvation of Lithium Ions 389
13.7.2.3 Reactive Additives Used to Make a Better Protective Film 391
13.7.3 Stack Pressure on Electrodes 396
13.7.4 Composite Lithium Anode 396
13.7.5 Influence of Cathode on Lithium Surface Film 397
13.7.6 An Alternative to the Lithium-Metal Anode (Lithium-Ion Inserted Anodes) 397
13.8 Safety of Rechargeable Lithium Metal Cells 398
13.8.1 Considerations Regarding Cell Safety 399
13.8.2 Safety Test Results 400
13.8.2.1 External Short 400
13.8.2.2 Overcharge 400
13.8.2.3 Nail Penetration 400
13.8.2.4 Crush 400
13.8.2.5 Heating 400
13.9 Conclusion 400
References 401
Further Reading 404

14 Lithium Alloy Anodes 405
Robert A. Huggins
14.1 Introduction 405
14.2 Problems with the Rechargeability of Elemental Electrodes 406
14.3 Lithium Alloys as an Alternative 407
14.4 Alloys Formed In situ from Convertible Oxides 409
14.5 Thermodynamic Basis for Electrode Potentials and Capacities under Conditions in which Complete Equilibrium can be Assumed 409
14.6 Crystallographic Aspects and the Possibility of Selective Equilibrium 412
14.7 Kinetic Aspects 413
14.8 Examples of Lithium Alloy Systems 414
14.8.1 Lithium–Aluminum System 414
14.8.2 Lithium–Silicon System 415
14.8.3 Lithium–Tin System 417
14.9 Lithium Alloys at Lower Temperatures 419
14.10 The Mixed-Conductor Matrix Concept 423
14.11 Solid Electrolyte Matrix Electrode Structures 427
Contents

14.12 What about the Future? 429
References 429
Further Reading 431

15 Lithiated Carbons 433
Martin Winter and Jürgen Otto Besenhard

15.1 Introduction 433
15.1.1 Why Lithiated Carbons? 436
15.1.2 Electrochemical Formation of Lithiated Carbons 437
15.2 Graphitic and Nongraphitic Carbons 437
15.2.1 Carbons: Classification, Synthesis, and Structures 438
15.2.2 Lithiated Graphitic Carbons (Li\textsubscript{x}C\textsubscript{n}) 441
15.2.2.1 In-Plane Structures 441
15.2.2.2 Stage Formation 442
15.2.2.3 Reversible and Irreversible Specific Charge 444
15.2.3 Li\textsubscript{x}C\textsubscript{6} vs Li\textsubscript{x} (solv)\textsubscript{y}C\textsubscript{n} 447
15.2.4 Lithiated Nongraphitic Carbons 452
15.2.5 Lithiated Carbons Containing Heteroatoms 461
15.2.6 Lithiated Fullerenes 462
15.3 Lithiated Carbons vs Competing Anode Materials 462
15.4 Summary 466
Acknowledgments 466
References 466
Further Reading 478

16 The Anode/Electrolyte Interface 479
Emanuel Peled, Diane Golodnitsky, and Jack Penciner

16.1 Introduction 479
16.2 SEI Formation, Chemical Composition, and Morphology 480
16.2.1 SEI Formation Processes 480
16.2.2 Chemical Composition and Morphology of the SEI 483
16.2.2.1 Ether-Based Liquid Electrolytes 483
16.2.2.1.1 Fresh Lithium Surface 483
16.2.2.2 Carbonate-Based Liquid Electrolyte 485
16.2.2.2.1 Fresh Lithium Surface 485
16.2.2.2.2 Lithium Covered by Native Film 485
16.2.2.3 Polymer (PE), Composite Polymer (CPE), and Gelled Electrolytes 486
16.2.3 Reactivity of e+ with Electrolyte Components – a Tool for the Selection of Electrolyte Materials 487
16.3 SEI Formation on Carbonaceous Electrodes 490
16.3.1 Surface Structure and Chemistry of Carbon and Graphite 490
16.3.2 The First Intercalation Step in Carbonaceous Anodes 493
16.3.3 Parameters Affecting Q\textsubscript{JR} 499
16.3.4 Graphite Modification by Mild Oxidation and Chemically Bonded (CB) SEI 500
16.3.5 Chemical Composition and Morphology of the SEI 503
16.3.5.1 Carbons and Graphites 503
16.3.5.2 HOPG 505
16.3.6 SEI Formation on Alloys 508
16.4 Models for SEI Electrodes 508
16.4.1 Liquid Electrolytes 508
16.4.2 Polymer Electrolytes 511
16.4.3 Effect of Electrolyte Composition on SEI Properties 513
16.4.3.1 Lithium Electrode 513
16.4.3.2 LiC6 Electrode 517
16.5 Summary and Conclusions 518
References 519
Further Reading 523

17 Liquid Nonaqueous Electrolytes 525
Heiner Jakob Gores, Josef Barthel, Sandra Zugmann, Dominik Moosbauer, Marius Amereller, Robert Hartl, and Alexander Maurer

17.1 Introduction 525
17.2 Components of the Liquid Electrolyte 526
17.2.1 The Solvents 526
17.2.2 The Salts 530
17.2.2.1 Lithium Perchlorate 530
17.2.2.2 Lithium Hexafluoroarsenate 531
17.2.2.3 Lithium Hexafluorophosphate 531
17.2.2.4 Lithium Tetrafluoroborate 532
17.2.2.5 Lithium Fluoroalkylphosphates 532
17.2.2.6 Lithium Bis(oxalato)borate 532
17.2.2.7 Lithium Difluoro(oxalato)borate and Lithium bis(fluorosulfonyl)imide 533
17.2.3 Ionic Liquids 537
17.2.3.1 Physical Chemical Properties 538
17.2.3.1.1 Viscosity 538
17.2.3.1.2 Conductivity 538
17.2.3.1.3 Diffusion Coefficient 539
17.2.3.1.4 Electrochemical Stability 539
17.2.3.1.5 Thermal Stability 539
17.2.3.2 Crystallization and Melting Points 539
17.2.3.3 Applications of ILs in Lithium-Ion Batteries 539
17.2.4 Purification of Electrolytes 548
17.2.5 Hydrolysis of Salts 549
17.3 Intrinsic Properties 550
17.3.1 Chemical Models of Electrolytes 551
18.2.2 The Fundamentals of a Polymer Electrolyte 630
18.2.3 Conductivity, Structure, and Morphology 632
18.2.4 Second-Generation Polymer Electrolytes 632
18.2.5 Structure and Ionic Motion 635
18.2.6 Mechanisms of Ionic Motion 637
18.2.7 An Analysis of Ionic Species 639
18.2.8 Cation-Transport Properties 639
18.3 Hybrid Electrolytes 643
18.3.1 Gel Electrolytes 644
18.3.2 Batteries 647
18.3.3 Enhancing Cation Mobility 649
18.3.4 Mixed-Phase Electrolytes 650
18.4 Looking to the Future 652
References 652
Further Reading 656

19 Solid Electrolytes 657
Peter Birke and Werner Weppner
19.1 Introduction 657
19.2 Fundamental Aspects of Solid Electrolytes 658
19.2.1 Structural Defects 658
19.2.2 Migration and Diffusion of Charge Carriers in Solids 666
19.3 Applicable Solid Electrolytes for Batteries 668
19.3.1 General Aspects 668
19.3.2 Lithium-, Sodium-, and Potassium-Ion Conductors 669
19.3.3 Capacity and Energy Density Aspects 671
19.4 Design Aspects of Solid Electrolytes 674
19.5 Preparation of Solid Electrolytes 676
19.5.1 Monolithic Samples 676
19.5.1.1 Solid-State Reactions 676
19.5.1.2 The Pechini Method 677
19.5.1.3 Wet Chemical Methods 677
19.5.1.4 Combustion Synthesis and Explosion Methods 678
19.5.1.5 Composites 678
19.5.1.6 Sintering Processes 679
19.5.2 Thick-Film Solid Electrolytes 679
19.5.2.1 Screen Printing 679
19.5.2.2 Tape Casting 679
19.5.3 Thin-Film Solid Electrolytes 680
19.5.3.1 Sputtering 680
19.5.3.2 Evaporation 680
19.5.3.3 Spin-On Coating and Spray Pyrolysis 681
19.6 Experimental Techniques for the Determination of the Properties of Solid Electrolytes 681
19.6.1 Partial Ionic Conductivity 681
19.6.1.1 Direct-Current (DC) Measurements 681
19.6.1.2 Impedance Analysis 682
19.6.1.3 Determination of the Activation Energy 683
19.6.2 Partial Electronic Conductivity 683
19.6.2.1 Determination of the Transference Number 685
19.6.2.2 The Hebb–Wagner Method 685
19.6.2.3 Mobility of Electrons and Holes 686
19.6.2.4 Concentration of Electrons and Holes 686
19.6.3 Stability Window 688
19.6.4 Determination of the Ionics Conduction Mechanism and Related Types of Defects 689
Acknowledgment 690
References 690
Further Reading 691

20 Separators for Lithium-Ion Batteries 693
Robert Spotnitz
20.1 Introduction 693
20.2 Market 694
20.3 How a Battery Separator Is Used in Cell Fabrication 697
20.4 Microporous Separator Materials 700
20.5 Gel Electrolyte Separators 707
20.6 Polymer Electrolytes 708
20.7 Characterization of Separators 708
20.8 Mathematical Modeling of Separators 712
20.9 Conclusions 714
References 714

21 Materials for High-Temperature Batteries 719
H. Böhm
21.1 Introduction 719
21.2 The ZEBRA System 720
21.2.1 The ZEBRA Cell 720
21.2.2 Properties of ZEBRA Cells 721
21.2.3 Internal Resistance of ZEBRA Cells 723
21.2.4 The ZEBRA Battery 726
21.3 The Sodium/Sulfur Battery 728
21.3.1 The Na–S System 728
21.3.2 The Na/S Cell 729
21.3.3 The Na/S Battery 731
21.3.4 Corrosion-Resistant Materials for Sodium/Sulfur Cells 733
21.3.4.1 Glass Seal 733
21.3.4.2 Cathode and Anode Seal 733
21.3.4.3 Current Collector for the Sulfur Electrode 734
21.4 Components for High-Temperature Batteries 735
21.4.1 The Ceramic Electrolyte β''-Alumina 735
21.4.1.1 Doping of β''-Al_2O_3 735
21.4.1.2 Manufacture of β''-Alumina Electrolyte Tubes 736
21.4.1.3 Properties of β''-Alumina Tubes 740
21.4.1.4 Stability of β-Alumina and β''-Alumina 742
21.4.2 The Second Electrolyte NaAlCl$_4$ and the NaCl–AlCl$_3$ System 742
21.4.2.1 Phase Diagram 742
21.4.2.2 Vapor Pressure 743
21.4.2.3 Density 744
21.4.2.4 Viscosity 744
21.4.2.5 Dissociation 745
21.4.2.6 Ionic Conductivity 746
21.4.2.7 Solubility of Nickel Chloride in Sodium Aluminum Chloride 746
21.4.3 Nickel Chloride NiCl$_2$ and the NiCl$_2$–NaCl System 748
21.4.3.1 Relevant Properties of NiCl$_2$ 748
21.4.3.2 NiCl$_2$–NaCl System 748
21.4.4 Materials for Thermal Insulation 749
21.4.4.1 Multifoil Insulation 750
21.4.4.2 Glass Fiber Boards 750
21.4.4.3 Microporous Insulation 751
21.4.4.4 Comparison of Thermal Insulation Materials 751
21.4.5 Data for Cell Materials 754
21.4.5.1 Nickel 754
21.4.5.2 Liquid Sodium 754
21.4.5.3 NaCl 754
21.4.5.4 Sulfur and Sodium Polysulfides 754
References 755
Further Reading 756

Part IV New Emerging Technologies 757

22 Metal–Air Batteries 759
Ji-Guang Zhang, Peter G. Bruce, and X. Gregory Zhang
22.1 General Characteristics 759
22.1.1 The Pros 760
22.1.1.1 High Specific Capacity and Energy 760
22.1.1.2 Low-Cost Cathode 763
22.1.2 The Cons 763
22.1.2.1 Power Limitations 763
22.1.2.2 Electrolyte Evaporation and Flooding 763
22.1.2.3 Side Reactions 763
22.1.2.4 Solid Discharge Products 764
22.2 Air Electrode 764
22.2.1 Catalyst 765
22.2.2 Carbon Sources 766
22.3 Zinc–Air Batteries 767
 22.3.1 Primary Zinc–Air Batteries 768
 22.3.2 Rechargeable Zinc–Air Batteries 770
 22.3.2.1 Electrically Rechargeable Zinc–Air Batteries 770
 22.3.2.2 Mechanically rechargeable Zinc–Air Batteries 772
 22.3.3 Hydraulically Rechargeable Zinc–Air Batteries 772
22.4 Lithium–Air Batteries 773
 22.4.1 Lithium–Air Batteries Using a Nonaqueous Electrolyte 775
 22.4.2 Lithium–Air Batteries Using Protected Lithium Electrodes 781
 22.4.3 Lithium–Air Batteries Using an Ionic Liquid Electrolyte 783
 22.4.4 Lithium–Air Batteries Using Solid Electrolytes 784
 22.4.5 Rechargeable Lithium–Air Batteries 785
22.5 Other–Air Batteries 789
22.6 Conclusions 792
Acknowledgment 792
References 792

23 Catalysts and Membranes for New Batteries 797
Chaitanya K. Narula
 23.1 Introduction 797
 23.2 Catalysts 798
 23.2.1 Catalysts in Metal–Air Batteries 798
 23.2.2 Catalysts in Lithium–Thionyl Chloride Batteries 800
 23.2.3 Catalysts in Other Batteries 800
 23.3 Separators 802
 23.3.1 Separator Types 802
 23.3.2 Separators for Batteries Based on Nonaqueous Electrolytes 803
 23.3.2.1 Primary Batteries Based on Lithium 803
 23.3.2.2 Secondary Batteries Based on Lithium 804
 23.3.2.2.1 The Lithium-Ion Battery 804
 23.3.2.2.2 Lithium Polymer Battery 805
 23.3.2.2.3 Lithium-Ion Gel Polymer Battery 805
 23.3.3 Separators for Batteries Based on Aqueous Electrolytes 806
 23.4 Future Directions 807
References 808

24 Lithium–Sulfur Batteries 811
Zengcai Liu, Wujun Fu, and Chengdu Liang
 24.1 Introduction 811
 24.2 Polysulfide Shuttle and Capacity-Fading Mechanisms 812
 24.2.1 Origin of Polysulfide Shuttle 813
 24.2.2 Influence of Polysulfide Shuttle on Charge Profile 814
 24.2.3 Effect of Polysulfide Shuttle on Charge–Discharge Capacities 815
 24.2.4 Capacit-Fading Mechanism 816
26 Mechanics of Battery Cells and Materials 877
Xiangchun Zhang, Myoungdo Chung, HyonCheol Kim, Chia-Wei Wang, and Ann Marie Sastry
26.1 Mechanical Failure Analysis of Battery Cells and Materials: Significance and Challenges 877
26.1.1 Introduction 877
26.1.2 Complications Associated with Analysis 878
26.1.2.1 Stochastic Microstructure of Electrode Materials 878
26.1.2.2 Multiple Physicochemical Processes 879
26.1.2.3 Multiple Length Scales and Time Scales 880
26.1.2.4 Mechanical Loads on Battery Materials 881
26.2 Key Studies in the Mechanical Analysis of Battery Materials 883
26.2.1 Identified Stresses in Battery Materials 883
26.2.1.1 Compaction/Residual Stresses due to the Manufacturing Process 883
26.2.1.2 Intercalation-Induced Stress 884
26.2.1.3 Thermal Stress 885
26.2.1.4 Compaction due to Packaging Constraints 885
26.2.2 Modeling and Experimental Analysis of Single Electrode Particles 886
26.2.2.1 Modeling of Intercalation-Induced Stress 886
26.2.2.2 Experimental Studies of Electrode Particles 889
26.2.3 Mechanical Stress and Electrochemical Cycling Coupling in Carbon Fiber Electrodes 892
26.2.4 Battery Cell Modeling with Stress 893
26.2.5 Comparison of the Magnitude of Various Stresses 896
26.3 Key Issues Remaining to be Addressed 897
26.3.1 Modeling and Simulations 897
26.3.1.1 From Stress Calculation to Fracture Analysis 897
26.3.1.2 How to Account for Real Stochastic Geometry 897
26.3.3 Reduced-Order Models 898
26.3.2 Experimental Approaches 898
26.3.3 Remediation of Stresses 899
26.4 Outlook for the Future 900
References 901

27 Battery Safety and Abuse Tolerance 905
Daniel H. Doughty
27.1 Introduction 905
27.2 Evaluation Techniques for Batteries and Battery Materials 907
27.2.1 Electrochemical Characterization 907
27.2.2 Thermal Characterization 907
27.2.2.1 Differential Scanning Calorimetry (DSC) 907
27.2.2.2 Accelerating-Rate Calorimeter (ARC) 908
27.2.2.3 Thermal Ramp Test 908
27.2.2.4 Large-Scale Calorimetry 908
27.2.3 Standardized Safety and Abuse Tolerance Test Procedures 909
27.3 Typical Failure Modes 910
27.3.1 Gas Generation 915
27.3.2 Physical Damage 916
27.3.3 Charge and Discharge Failures 916
27.3.4 Short Circuit 917
27.4 Safety Devices 918
27.5 Discussion of Safety and Abuse Response for Battery Chemistries 919
27.5.1 Zinc–Carbon Batteries (Leclanché Cells) 919
27.5.2 Alkaline Batteries 920
27.5.3 Lead–Acid Batteries 921
27.5.4 Nickel–Cadmium Batteries 922
27.5.5 Nickel–Metal Hydride Batteries 923
27.5.6 Lithium Primary Batteries 924
27.5.7 Lithium–Manganese Dioxide (Li–MnO₂) 924
27.5.8 Lithium–Carbon Monofluoride (Li–(CF)x) 925
27.5.9 Lithium–Thionyl Chloride (Li–SOCl₂) 925
27.5.10 Lithium–Sulfur Dioxide (Li–SO₂) 926
27.5.11 Lithium Secondary Batteries 927
27.5.12 Lithium Metal Secondary Batteries 928
27.5.13 Lithium-Ion Batteries 929
27.5.14 Separators in Lithium-Ion Batteries 932
27.5.15 Electrolytes in Lithium-Ion Batteries 933
27.5.16 Lithium Polymer Batteries 934
27.5.17 Summary 935
Acknowledgments 935
References 936

28 Cathode Manufacturing for Lithium-Ion Batteries 939
Jianlin Li, Claus Daniel, and David L. Wood III
28.1 Introduction 939
28.2 Electrode Manufacturing 940
28.2.1 Slurry Processing 940
28.2.1.1 Casting 941
28.2.1.1.1 Tape Casting 941
28.2.1.1.2 Slot-Die Coating 942
28.2.1.2 Printing 943
28.2.1.2.1 Screen Printing 944
28.2.1.2.2 Ink-jet Printing 944
28.2.1.3 Spin Coating 945
28.2.2 Vacuum Techniques 947
28.2.2.1 Chemical Vapor Deposition 947
28.2.2.2 Electrostatic Spray Deposition 949
28.2.2.3 Pulsed Laser Deposition 952
28.2.2.4 Radio Frequency (RF) Sputtering 953
28.2.3 Other Processing – Molten Carbonate Method 955
28.3 Summary 955
References 957

Index 961