The Soar Cognitive Architecture

John E. Laird

The MIT Press
Cambridge, Massachusetts
London, England
Contents

Preface xiii
Acknowledgments xv

1 Introduction 1
 1.1 Background 3
 1.2 Cognitive Architectures 5
 1.3 Soar 17
 1.4 Research Strategy 22
 1.5 Preview of Chapters 2-14 24

2 Requirements for Cognitive Architectures 27
 2.1 Characteristics of Environments, Tasks, and Agents 29
 2.2 Architectural Requirements 32

3 The Problem-Space Computational Model 43
 3.1 Task Environments 44
 3.2 The Problem-Space Framework 47
 3.3 Knowledge Search 53
 3.4 Problem-Space Computational Models 55
 3.5 Impasses and Substates 63
 3.6 Using Multiple Sources of Knowledge 66
 3.7 Acquiring Knowledge 67
 3.8 Alternative PSCMs 68

4 Soar as an Implementation of the PSCM 69
 4.1 Production Systems 70
 4.2 Mapping Production Systems onto the PSCM 72
 4.3 The Soar Processing Cycle 78
 4.4 Demonstrations of Basic PSCM 97
 4.5 Discussion 107
 4.6 Analysis of Requirements 116
5 Impasses and Substates: The Basis for Complex Reasoning 119
 5.1 Impasses 120
 5.2 Substates 121
 5.3 Problem Solving in Substates 122
 5.4 Substate Results 125
 5.5 Maintaining Consistency 129
 5.6 Demonstrations of Impasses and Substates 130
 5.7 Discussion 155
 5.8 Analysis of Requirements 156

6 Chunking 159
 6.1 Chunking in Soar 160
 6.2 Implications of Chunking in Soar 164
 6.3 Demonstrations of Chunking 166
 6.4 Assumptions Inherent to Chunking 175
 6.5 Analysis of Requirements 179

7 Tuning Procedural Knowledge: Reinforcement Learning 181
 7.1 Reinforcement Learning in Soar 183
 7.2 Learning over Large State Spaces 189
 7.3 Demonstrations of Reinforcement Learning 191
 7.4 Analysis of Requirements 202

8 Semantic Memory 203
 8.1 Semantic Memory in Soar 207
 8.2 Encoding and Storage 209
 8.3 Retrieval 213
 8.4 Demonstrations of Semantic Memory 215
 8.5 Analysis of Requirements 223

9 Episodic Memory 225
 9.1 Episodic Memory in Soar 227
 9.2 Encoding and Storage 229
 9.3 Retrieval 230
 9.4 Use of Episodic Memory 232
 9.5 Demonstrations of Episodic Memory 234
 9.6 Comparison of Episodic Memory and Semantic Memory 243
 9.7 Analysis of Requirements 245

10 Visuospatial Processing with Mental Imagery 247
 10.1 Visual and Spatial Representations 249
 10.2 Visuospatial Domains 252
 10.3 SVS 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4 Demonstrations of Spatial and Visual Imagery</td>
<td>265</td>
</tr>
<tr>
<td>10.5 Analysis of Requirements</td>
<td>268</td>
</tr>
<tr>
<td>11 Emotion</td>
<td>271</td>
</tr>
<tr>
<td>11.1 Appraisal Theories of Emotion</td>
<td>272</td>
</tr>
<tr>
<td>11.2 Abstract Functional Cognitive Operations</td>
<td>274</td>
</tr>
<tr>
<td>11.3 Unifying Cognitive Control and Appraisal</td>
<td>277</td>
</tr>
<tr>
<td>11.4 Emotion, Mood, and Feeling</td>
<td>278</td>
</tr>
<tr>
<td>11.5 Emotion and Reinforcement Learning</td>
<td>279</td>
</tr>
<tr>
<td>11.6 Demonstrations of Emotion Processing</td>
<td>280</td>
</tr>
<tr>
<td>11.7 Analysis of Requirements</td>
<td>284</td>
</tr>
<tr>
<td>12 Demonstrations of Multiple Architectural Capabilities</td>
<td>287</td>
</tr>
<tr>
<td>12.1 Learning to Use Episodic Memory with Reinforcement Learning</td>
<td>287</td>
</tr>
<tr>
<td>12.2 Using Mental Imagery with Reinforcement Learning</td>
<td>294</td>
</tr>
<tr>
<td>12.3 Diverse Forms of Action Modeling</td>
<td>299</td>
</tr>
<tr>
<td>12.4 Analysis of Requirements</td>
<td>304</td>
</tr>
<tr>
<td>13 Soar Applications</td>
<td>307</td>
</tr>
<tr>
<td>13.1 Applications</td>
<td>307</td>
</tr>
<tr>
<td>13.2 TacAir-Soar</td>
<td>313</td>
</tr>
<tr>
<td>13.3 Imagining TacAir-Soar 2.0</td>
<td>317</td>
</tr>
<tr>
<td>14 Conclusion</td>
<td>325</td>
</tr>
<tr>
<td>14.1 Soar from a Structural Perspective</td>
<td>326</td>
</tr>
<tr>
<td>14.2 Soar from a Functional Perspective</td>
<td>328</td>
</tr>
<tr>
<td>14.3 Evaluating Soar on Architectural Requirements</td>
<td>331</td>
</tr>
<tr>
<td>References</td>
<td>347</td>
</tr>
<tr>
<td>Index</td>
<td>367</td>
</tr>
</tbody>
</table>