Michael Bukshtab

Applied Photometry, Radiometry, and Measurements of Optical Losses
Contents

Part I Applied Photometry and Radiometry

1 Radiometric and Photometric Quantities and Notions 3
 1.1 Physical Sense of Radiometric Conception 3
 1.1.1 Statistical Field of Optical Radiation 3
 1.1.2 Propagation of Light Waves 4
 1.1.3 Intensity of Radiation and Light Rays 6
 1.2 Parameters of Optical Radiation 9
 1.2.1 Radiometric Quantities and Units 9
 1.2.2 Parameters of Optical Radiation 12
 1.2.3 Invariable Parameters of a Light Tube 15
 1.2.4 Flux and Radiance of Optical Radiation 18
 1.2.5 Intensity and Emittance of a Light Beam 20
 1.2.6 Irradiance and the Inverse-Square and Cosine Law 24
 1.3 Interactions of Radiation with Material Objects 27
 1.3.1 Factors and Coefficients of Attenuation 27
 1.3.2 Localized Optical Properties 33
 1.3.3 Multiple Optical Elements 36
 1.3.4 Diffuse Irradiation ... 40

2 Methods of Photometric and Radiometric Measurements 49
 2.1 Evaluation of Power and Energy Extents of Optical Radiation 49
 2.1.1 Methods of Optical Flux and Energy Measurements 49
 2.1.2 Measurement of Surface Density of Light 53
 2.1.3 Absolute Flux Measurement Via an Integrating Sphere 55
 2.1.4 Spherical Density of Radiation 56
 2.1.5 Measurement of Angular Density of Radiation 59
 2.1.6 Radiance and Luminance Measurements 60
 2.2 Analysis of Attenuation Factors 62
 2.2.1 Measurements in Transmitted Light 63
2.2.2 Measurements of Reflectance ... 66
2.2.3 Directional Scattering Measurements 73
2.3 Measurements of Color Coordinates and Indices 76
2.4 Photometry of Integrating Spheres .. 92
 2.4.1 Uniformly Scattering Spheres .. 92
 2.4.2 Relative Measurements .. 95
 2.4.3 Samples Performing as Nonuniform Diffusers 99
 2.4.4 Absolute Measurements in an Integrating Sphere 99
 2.4.5 Baffling Method .. 101
 2.4.6 Efficiency Approach ... 102
 2.4.7 Viewing Method .. 103
 2.4.8 Reduction of Systematic Errors of Absolute Measurements 104
 2.4.9 Spheres of Nonisotropic Diffusers 108
 2.4.10 Fully Isotropic Irradiation of Integrating Sphere 112
 2.4.11 Essentials of Diffuse Transmittance Measurements 114
 2.4.12 Separation of Direct and Diffuse Transmittance 116
 2.4.13 Coupling of Integrating Spheres 118
 2.4.14 Integrating Spheres for Isotropic Irradiation 121

3 Radiometry of Partially Coherent Radiation 129
 3.1 Coherence and Radiative Transfer 129
 3.1.1 Observability and Statistical Properties of Radiation 129
 3.1.2 Planar Sources of Incoherent and Coherent Light 135
 3.1.3 Quasi-Homogeneous Partially Coherent Planar Sources 137
 3.1.4 Propagation of Coherence and Observation of Polychromatic Radiation .. 141
 3.1.5 Summary .. 144
 3.2 Laser and Pulsed Light ... 144
 3.2.1 Propagation Extents of Laser Radiation 144
 3.2.2 Applicability of Lasers for Various Optical Measurements 147
 3.2.3 Optical Radiation as a Pulse Train 151
 3.2.4 Measurements in Pulsed Radiation 154
 3.3 Interference Phenomena and Optical Measurements 159
 3.3.1 Fringe Visibility of Interference Patterns in Transmitted and Reflected Light ... 159
 3.3.2 Reductions of Interference Noise 163
 3.3.3 Interference Effects Induced by Birefringence 170
 3.3.4 Stabilization of Radiation Emission 180
 3.3.5 Polarization Measurements 184
 3.4 Diffraction Corrections and Gratings in Radiometry and Photometry .. 187
3.4.1 Maxima-Shifting Anomaly for Step-Function Diffraction Grating in Reflected Light 192
3.4.2 Diffraction Gratings as Spectral and Color Filters 214

4 Photometers and Radiometers ... 217
4.1 Optical Design and Absolute Calibration of Radiometers 217
4.1.1 Spectrally Unselective Systems 217
4.1.2 Diffuse Attenuators .. 222
4.1.3 Radiometric and Photometric Energy and Power Scales ... 227
4.1.4 Absolute Calibration of Photoelectric Radiometers 229
4.1.5 Detector-Based Spectroradiometric and Photometric Scales ... 231
4.1.6 Optical Elements of Radiometric and Photometric Standards ... 235
4.1.7 Radiometric and Photometric Scales for Spectral Irradiance and Luminous Intensity 238
4.2 Attenuation and Color Photometers and Spectrophotometers 240
4.2.1 Measurements of Direct Transmittance and Specular Reflectance ... 240
4.2.2 Polychromatic and Spectrophotometric Systems 243
4.2.3 Reference Transmission Spectrophotometers 245
4.2.4 Specialty Spectrophotometers ... 248
4.2.5 Systems of Multiple-Beam Interactions 250
4.2.6 Measurements at Intensive Irradiation 252
4.2.7 Studies of Integrated Scattering ... 253
4.2.8 Specialty Applications of Integrating Spheres for Optical Calibrations and Measurements 261
4.2.9 Color-Coordinate Measurements ... 264
4.3 Photometric Accuracy and Verification of Linearity 268
4.3.1 Measurements with Fixed Attenuation 269
4.3.2 Dual-Aperture and Superposition Methods 274
4.3.3 Pulsed Measurements .. 276
4.3.4 Arrangements for Light Addition Studies 279

Part II Measurements of Optical Losses

5 Conventional Loss-Measurement Techniques 289
5.1 Internal Transmittance and Attenuation Coefficient 289
5.2 Specular Reflectance .. 299
5.3 Scattering Factor .. 309

6 Systems of Multiple Reflections ... 321
6.1 Flat-Mirror and Prism Reflector Cells 321
6.2 Multipass Cavities .. 328
6.2.1 Long-Path Matrix Cells ... 332
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Mirror Waveguides</td>
<td>342</td>
</tr>
<tr>
<td>6.4</td>
<td>Multiplication of Raman Scattering</td>
<td>348</td>
</tr>
<tr>
<td>6.5</td>
<td>Interference-Fringe Reduction in Multipass and Derivative Spectroscopy</td>
<td>359</td>
</tr>
<tr>
<td>7</td>
<td>Laser Spectroscopy</td>
<td>367</td>
</tr>
<tr>
<td>7.1</td>
<td>Active Intracavity Measurements</td>
<td>367</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison of Intracavity Methods</td>
<td>373</td>
</tr>
<tr>
<td>7.3</td>
<td>Intracavity and Ringdown Spectroscopy</td>
<td>378</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Sensitivity Limitations of Intracavity Laser Spectroscopy</td>
<td>382</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Cavity Ringdown Spectroscopy</td>
<td>384</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Multimode Versus Single-Mode Studies</td>
<td>392</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Continuous-Wave Ringdown Spectrometers</td>
<td>396</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Cavity-Enhanced Broadband Spectroscopy</td>
<td>398</td>
</tr>
<tr>
<td>8</td>
<td>Measurements in Passive Resonators</td>
<td>401</td>
</tr>
<tr>
<td>8.1</td>
<td>Pulse-Separation Techniques</td>
<td>401</td>
</tr>
<tr>
<td>8.2</td>
<td>Interferometric Analysis</td>
<td>409</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Elimination of Interference</td>
<td>414</td>
</tr>
<tr>
<td>8.3</td>
<td>Resonant Phase-Shift and Decay-Time Studies</td>
<td>417</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Interference Safeguards</td>
<td>420</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Decay-Time Measurements</td>
<td>423</td>
</tr>
<tr>
<td>8.4</td>
<td>Quality-Factor Transfer Method and Asymmetric-Cavity Measurements</td>
<td>431</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Measurements in Tuning Resonators</td>
<td>436</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Quality-Factor Transition Between Two Resonator Eigenstates</td>
<td>438</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Nonresonant, Off-Axis Techniques</td>
<td>441</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Resonant Asymmetric-Cavity Techniques</td>
<td>443</td>
</tr>
<tr>
<td>8.5</td>
<td>Evaluation of Loss Dichroism and Phase Dispersion</td>
<td>447</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Recognition of Phase Dispersion</td>
<td>450</td>
</tr>
<tr>
<td>8.5.2</td>
<td>In Situ Laser-Based Measurements</td>
<td>453</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Spectrophotometric Study of Phase Dispersion</td>
<td>455</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Colorimetric Approach to Phase Recognition</td>
<td>461</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Spatial-Spectral Interferometry</td>
<td>463</td>
</tr>
<tr>
<td>9</td>
<td>Determination of Absorption Losses</td>
<td>469</td>
</tr>
<tr>
<td>9.1</td>
<td>Laser Calorimetry</td>
<td>469</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Local Absorptance</td>
<td>479</td>
</tr>
<tr>
<td>9.2</td>
<td>Thermal-Lensing, Photothermal, and Photoacoustic Techniques</td>
<td>482</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Thermal Lensing</td>
<td>483</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Photothermal Deflection</td>
<td>489</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Photothermal Interferometry</td>
<td>495</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Photoacoustic Spectroscopy</td>
<td>504</td>
</tr>
<tr>
<td>9.2.5</td>
<td>In Situ and Remote Photoacoustic Spectroscopies</td>
<td>508</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Trace-Gas Photoacoustic Analysis</td>
<td>511</td>
</tr>
</tbody>
</table>
9.3 Emissive Spectroscopy ... 517
9.4 Integrating Spheres as Multiple-Reflection Cavities 521
 9.4.1 Integrating-Cavity Absorption Measurements 521
 9.4.2 Integrating Spheres as Absorption Cells for Gaseous Substances ... 531

10 Direct Attenuation Measurements ... 537
10.1 Differential, Ratio, and Single-Channel Systems 537
10.2 Derivative Spectroscopy .. 546
10.3 Wavelength Tuning and Balanced Detection 555
 10.3.1 Tunable Diode Systems 556
 10.3.2 Balanced Detection ... 563
10.4 Separation of Bulk and Surface Losses 567
 10.4.1 Distinction of Surface Losses 568
 10.4.2 Resolving Internal Properties 571
10.5 Reflection Spectrophotometry 576
 10.5.1 Reflected-Light Measurements 584
 10.5.2 Sensitivity Comparison 586

11 Propagation Losses in Fibers and Waveguides 589
11.1 Measurements of Internal Optical Attenuation
 for Guided Light ... 589
 11.1.1 Integrated Waveguides 594
 11.1.2 Absorption and Scattering Losses 597
 11.1.3 Analysis of Scattering Losses 601
 11.1.4 Polarization Dependent Losses 605
11.2 Analysis of Return Losses via Backscattered Radiation 610
11.3 Partition of Distributed Losses and Attenuation Factors
 in Reflected Light .. 617
11.4 Interference Noise and Crosstalk in Fiber Transmission Systems . 629
 11.4.1 Crosstalk and Systems with Multiple Interferers 641

References ... 653
Index .. 691