Contents

1 Introduction 1
1.1 Concepts of quantum mechanical tunneling 2
1.2 Occurrence of tunneling phenomena 2
1.3 Electron tunneling in solid-state structures 6
1.4 Superconducting (quasiparticle) and Josephson (pair) tunneling 9
1.5 Tunneling spectroscopies 13
1.6 The scanning tunneling microscope (STM): spectroscopic images 15
1.7 Atomic spatial resolution in the scanning tunneling microscope 16
1.8 Density of electron states (DOS) measurement in STM: STS 16
1.9 Perspective, scope, and organization 20

2 Tunneling in normal-state structures: I 23
2.1 Introduction 23
2.2 Calculational methods and models 23
  2.2.1 Stationary-state calculations 25
  2.2.2 Transfer Hamiltonian calculations 27
  2.2.3 Ideal barrier transmission 29
2.3 Basic junction types 37
  2.3.1 Metal–insulator–metal junctions 39
  2.3.2 Metal–insulator–semiconductor junctions 48
  2.3.3 Schottky barrier junctions 49
  2.3.4 pn junction (Esaki diode)—direct case and the Si–Ge diode 56
  2.3.5 Vacuum tunneling 58
  2.3.6 Vacuum tunneling from a spherical STM tip 60
2.4 Dependence of J(V) and G(V) on band structure and density of states 61
  2.4.1 Fermi surface integrals 61
  2.4.2 Prefactors: wavefunction matching at boundaries 62
2.5 Nonideal barrier transmission 63
  2.5.1 Approach to ideal behavior 63
  2.5.2 Resonant barrier levels 69
  2.5.3 Two-step tunneling 72
  2.5.4 Barrier interactions 76
2.6 Assisted tunneling processes 76
2.7 Comments on the time for tunneling 79
2.8 Resolution obtained from a scanning tunneling microscope tip 80
  2.8.1 Tersoff and Hamann’s model of STM resolution 80
  2.8.2 C. Julian Chen’s atomic model of STM resolution 80

3 Spectroscopy of the superconducting energy gap: quasiparticle and pair tunneling 82
3.1 Basic experiments of Giaever and Josephson tunneling 82
3.2 Superconductivity 85
3.3 Electron–phonon coupling and the BCS theory 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>The pair ground state</td>
<td>96</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Elementary excitations of superconductors</td>
<td>100</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Generalizations of BCS theory</td>
<td>101</td>
</tr>
<tr>
<td>3.4</td>
<td>Theory of quasiparticle and pair tunneling</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>Gap spectra of equilibrium BCS superconductors</td>
<td>112</td>
</tr>
<tr>
<td>3.6</td>
<td>Gap spectra in more general homogeneous equilibrium superconductor cases</td>
<td>121</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Strong-coupling superconductors</td>
<td>121</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Gap anisotropy</td>
<td>124</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Multiple gaps, two-band superconductivity</td>
<td>128</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Excess currents, subharmonic structure</td>
<td>130</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Effects of magnetic field</td>
<td>138</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Magnetic impurities</td>
<td>145</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Pressure effects</td>
<td>147</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Interactions with electromagnetic radiation</td>
<td>150</td>
</tr>
<tr>
<td>3.6.9</td>
<td>Superconducting fluctuations</td>
<td>158</td>
</tr>
<tr>
<td>3.7</td>
<td>Ultrathin-film and small-particle superconductors</td>
<td>160</td>
</tr>
<tr>
<td>3.8</td>
<td>Transition from tunnel junction to metallic contact</td>
<td>170</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Model of Klapwijk, Blonder, and Tinkham</td>
<td>171</td>
</tr>
</tbody>
</table>

### 4 Conventional tunneling spectroscopy of strong-coupling superconductors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>4.2</td>
<td>Eliashberg-Nambu strong-coupling theory of superconductivity</td>
<td>173</td>
</tr>
<tr>
<td>4.3</td>
<td>Tunneling density of states</td>
<td>177</td>
</tr>
<tr>
<td>4.4</td>
<td>Quantitative inversion for $\alpha^2 F(\omega)$: test of Eliashberg theory</td>
<td>178</td>
</tr>
<tr>
<td>4.5</td>
<td>Extension to more general cases</td>
<td>182</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Finite temperature</td>
<td>182</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Anisotropy</td>
<td>185</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Spin fluctuations</td>
<td>187</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Electronic density-of-states variation</td>
<td>190</td>
</tr>
<tr>
<td>4.6</td>
<td>Limitations of the conventional method</td>
<td>194</td>
</tr>
</tbody>
</table>

### 5 Inhomogeneous superconductors: the superconducting proximity effect

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction: continuity of the pair wavefunction</td>
<td>197</td>
</tr>
<tr>
<td>5.2</td>
<td>Andreev reflection and specular SNS junctions</td>
<td>199</td>
</tr>
<tr>
<td>5.3</td>
<td>Survey of phenomena in proximity tunneling structures</td>
<td>206</td>
</tr>
<tr>
<td>5.4</td>
<td>Specular theory of tunneling into proximity structures</td>
<td>212</td>
</tr>
<tr>
<td>5.5</td>
<td>McMillan's tunneling model of bilayers</td>
<td>223</td>
</tr>
<tr>
<td>5.6</td>
<td>The Usadel equations and diffusive SNS junctions</td>
<td>228</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Reduction of Gor'kov's equations by Eilenberger and Usadel</td>
<td>228</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Application of reduced Gor'kov theory to tunneling problems</td>
<td>229</td>
</tr>
<tr>
<td>5.6.3</td>
<td>The experiment of Truscott and Dynes confirming the bound state in clean NS junctions</td>
<td>230</td>
</tr>
<tr>
<td>5.6.4</td>
<td>The experiment of le Sueur et al.: phase dependence of the density of states</td>
<td>231</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Proximity effects in a ferromagnetic N layer, in an NS structure</td>
<td>235</td>
</tr>
<tr>
<td>5.7</td>
<td>Proximity electron tunneling spectroscopy (PETS)</td>
<td>236</td>
</tr>
<tr>
<td>5.8</td>
<td>Effects of elastic scattering in the N layer</td>
<td>245</td>
</tr>
<tr>
<td>5.9</td>
<td>Proximity corrections to conventional results</td>
<td>250</td>
</tr>
<tr>
<td>5.10</td>
<td>Further applications of proximity effect models</td>
<td>251</td>
</tr>
</tbody>
</table>
6 Superconducting phonon spectra and $\alpha^2 F(\omega)$
6.1 Introduction 256
6.2 s-p band elements 256
6.3 Crystalline s-p band alloys and compounds 263
   6.3.1 Crystalline s-p band alloy superconductors 263
   6.3.2 s-p band compounds 270
6.4 Amorphous metals 273
6.5 Transition metals, alloys, and compounds 281
6.6 Extreme weak-coupling metals 291
6.7 Local-mode and resonance-mode superconductors 295
6.8 Systematics of superconductivity 298
6.9 Effects of external conditions and parameters on strong-coupling features 302
6.10 Eliashberg inversion of bismuthate and cuprate superconductor tunneling data 306

7 High-$T_c$ electron-coupled superconductivity: cuprate and iron-based superconductors
7.1 The discovery of cuprate superconductivity by Bednorz and Muller 312
7.2 The Mott antiferromagnetic CuO$_2$ insulator and its doping to a metal 313
   7.2.1 Paired holes in copper oxide planes 313
   7.2.2 Hubbard and t-J models in two dimensions 316
7.3 Hole-doped cuprates Bi2212 and YBCO 317
   7.3.1 Phase diagram for superconductivity in hole-doped cuprate 317
   7.3.2 Crystal structures of common cuprates: I 318
   7.3.3 Early tunneling measurements on hole-doped superconductors 319
7.4 Crystal structures of common cuprates: II 325
   7.4.1 Range of $T_c$ vs. number of copper oxide planes 325
   7.4.2 Disorder sites and doping of cuprate superconductors 325
   7.4.3 Comments on disorder and inhomogeneity in STS images 327
7.5 Andreev-St. James tunneling spectroscopy 328
7.6 Experimental signatures of nodal superconductivity 328
   7.6.1 Specific heat at transition 330
7.7 Josephson junctions in d-wave cases 332
7.8 Further examples of non-BCS superconductors 335

8 Tunneling in normal-state structures: II
8.1 Introduction 336
8.2 Final-state effects: I 336
   8.2.1 Two-dimensional final states 336
   8.2.2 Quantum size effects in metal films 338
   8.2.3 Accumulation layers at semiconductor surfaces 339
   8.2.4 Spin-polarized tunneling as a probe of ferromagnets 343
   8.2.5 Julliere’s model of ferromagnetic tunnel junctions 350
   8.2.6 Other bulk band structure effects 352
8.3 Assisted tunneling: threshold spectroscopies 357
   8.3.1 Phonons 358
   8.3.2 Inelastic electron tunneling spectroscopy of molecular vibrations 366
   8.3.3 Inelastic excitations of spin waves (magnons) 367
   8.3.4 Inelastic excitation of surface and bulk plasmons 368
   8.3.5 Light emission by inelastic tunneling 369
   8.3.6 Spin-flip and Kondo scattering 372
   8.3.7 Excitation of electronic transitions 378
CONTENTS

8.4 Final-state effects: II
  8.4.1 More general many-body theories of tunneling 384
  8.4.2 Tunneling studies of electron correlation and localization in metallic systems 389
  8.4.3 Phonon self-energy effects in degenerate semiconductors 394
  8.4.4 Electron scattering in the Kondo ground state 401

8.5 Zero-bias anomalies
  8.5.1 Giant resistance peak 407
  8.5.2 Semiconductor conductance minima 409
  8.5.3 Assorted maxima and minima in metals 411
  8.5.4 The Giaever–Zeller resistance peak model 414

9 Scanning tunneling spectroscopy (STS) of single atoms and molecules 419
  9.1 Theory of observation of single atoms in STS and experiment 419
  9.2 Friedel oscillations in 2-D surface state
    9.2.1 Effect of surface state: inference of wavevector 425
    9.2.2 Fourier-transform STM/STS 425
  9.3 Quantum corrals
    9.3.1 Elliptical corrals and focusing effects: quantum mirage 427
  9.4 Pair-breaking single adatoms on superconductors
    9.4.1 Mn and Cr on Pb 430
    9.4.2 Zn impurity atoms imaged in cuprate planes 431
  9.5 Spectroscopy of Kondo and spin-flip scattering
    9.5.1 Introduction 432
    9.5.2 Kondo spectroscopy of a single trapped electron 433
    9.5.3 Spectroscopy of localized moments in Si:As Schottky junctions 435
    9.5.4 Comparison of the two Kondo spectroscopy experiments 436
  9.6 STM spectroscopy of magnetic adatoms 436
  9.7 Molecules and their vibrational spectra 443

10 Scanning tunneling spectroscopy of superconducting cuprates and magnetic manganites 447
  10.1 Gap imaging of optimally doped cuprates
    10.1.1 Site dependence of apparent gap 447
    10.1.2 Overdoped case 449
    10.1.3 Anticorrelation of gap and zero-bias density of states 449
    10.1.4 Internal proximity effect 449
  10.2 Localized state at Zn impurity 452
  10.3 Model for spectral distortions of noncuprate layers 456
  10.4 Superlattice modulation in Bi2212 458
  10.5 Fourier-transform STS (FT-STS) and application 460
  10.6 Observations of charge ordering in cuprate superconductors 460
  10.7 Relation of STS to angle-resolved photoemission spectroscopy (ARPES) 464
  10.8 Evidence for electron-spin wave coupling 467
  10.9 Colossal magnetoresistance: Mott transition in doped manganites 470
    10.9.1 Introduction: mechanism of colossal magnetoresistance (CMR) 470
    10.9.2 Pseudogap in manganite LSMO observed by ARPES 472
  10.10 Relation of cuprates to ferromagnetic CMR manganites 473

11 Applications of barrier tunneling phenomena 475
  11.1 Introduction 475
  11.2 Josephson junction interferometers 477
11.3 SQUID detectors: the scanning SQUID microscope
   11.3.1 Establishing d-wave nature of cuprate pairing
11.4 Josephson junction logic: rapid single-flux quantum devices
   11.4.1 The single-flux quantum voltage pulse
   11.4.2 Analog to digital conversion (ADC) using RSFQ logic
11.5 Detection of radiation
   11.5.1 SIS detectors
   11.5.2 Josephson effect detectors
   11.5.3 Optical point-contact antennas (high-speed MIM junctions)
11.6 Tunnel-junction magnetoresistance sensors

Appendix A Experimental methods of junction fabrication and characterization
   A.1 Thin-film electrodes
      A.1.1 Evaporated films
      A.1.2 Film thickness measurement
      A.1.3 Substrate temperature
      A.1.4 Sputtered films
      A.1.5 Chemical vapor–deposited films
      A.1.6 Epitaxial single-crystal films
      A.1.7 Atomic layer deposition
   A.2 Foil and single-crystal electrodes
   A.3 Characterization of tunneling electrodes
   A.4 Preparation of oxide tunneling barriers
      A.4.1 Thermal oxide barriers
      A.4.2 Plasma oxidation processes
   A.5 Artificial barriers
      A.5.1 Totally oxidized metal overlayers
      A.5.2 Directly deposited artificial barriers
      A.5.3 Polymerized organic films
   A.6 Point-contact barrier tunneling methods
      A.6.1 Anodized metal probes
      A.6.2 Schottky barrier probes
      A.6.3 Deformable metal vacuum tunneling probes
      A.6.4 Analysis of point-contact data
   A.7 Characterization of tunnel junctions
      A.7.1 Initial characterization of junctions
      A.7.2 Derivative measurement circuitry

Appendix B Methods of scanning tunneling spectroscopy and competing approaches
   B.1 STM basics, tip production, and characterization; single atom tips
   B.2 Noise-free x, y, z translation; vibration isolation
      B.2.1 The cryogenic STM of Wilson Ho
      B.2.2 The 240-mK STM design of Pan, Hudson, and J. C. Davis
   B.3 Atomic force microscope; combination STM/AFM
   B.4 Scanning tunneling potentiometry and point-contact measurements
   B.5 Ballistic electron emission microscopy (BEEM)
   B.6 Scanning charge microscopy and spectroscopy
      B.6.1 Scanning single-electron-transistor electrometry
      B.6.2 Scanning subsurface charge accumulation microscopy: STM/SCAM
      B.6.3 Single electron capacitance spectroscopy
   B.7 Scanning Hall probe microscopy
Appendix C  Tabulated results  542
Table C.1  s, p elements  543
Table C.2  Alloys and unusual phases: s, p elements  544
Table C.3  d-band elements  545
Table C.4  d-band alloys, oxides, and compounds  546
Table C.5  f-band elements  548
Table C.6  Metal overlayers for barrier formation  548
Table C.7  Studies of Tomach oscillations in thick superconducting films and of McMillan–Rowell oscillations in thick normal films  548
Table C.8  Tunneling studies of superconductor phonons under hydrostatic pressure  548
Tables C.9  Cuprate superconductors  549
  Table C.9a  Gap values for Bi₂Sr₂CaCu₂O₈₊ₓ (Bi2212)  549
  Table C.9b  Gap values for YBa₂Cu₃O₇₊ₓ  550
  Table C.9c  Gap values for HgBa₂Caₙ₋₁CuₙO₂n₊₂₊δ  551

References  553

Index  583