Coordinated Multi-Point in Mobile Communications

From Theory to Practice

Edited by

PATRICK MARSCH
Nokia Siemens Networks, Wrocław, Poland

GERHARD P. FETTWEIS
Technische Universität Dresden, Germany
Contents

List of Contributors
Acknowledgements
List of Abbreviations
Nomenclature and Notation

Part I Motivation and Basics

1. **Introduction**
 1.1 Motivation
 1.2 Aim of this Book
 1.3 Classes of CoMP Considered
 1.4 Outline of this Book

2. **An Operator's Point of View**
 2.1 The Mobile Internet - A Success Story so far
 2.2 Requirements on Future Networks and Upcoming Challenges
 2.3 The Role of CoMP
 2.4 The Role of Field Trials

3. **Information-Theoretic Basics**
 3.1 Observed Cellular Scenarios
 3.2 Usage of OFDMA for Broadband Wireless Communications
 3.3 Multi-Point Frequency-Flat Baseband Model Considered
 3.4 Uplink Transmission
 3.4.1 Basic Uplink Capacity Bounds
 3.4.2 Full Cooperation in the Uplink
 3.4.3 No Cooperation in the Uplink
 3.4.4 Numerical Example
 3.5 Downlink Transmission
 3.5.1 Basic Downlink Capacity Bounds
 3.5.2 Full Cooperation in the Downlink
 3.5.3 No Cooperation in the Downlink
 3.5.4 Numerical Example

3.6 Summary

4 Gains and Trade-Offs of Multi-Cell Joint Signal Processing

4.1 Modeling Imperfect Channel State Information (CSI)
 4.1.1 Imperfect CSI in the Uplink
 4.1.2 Imperfect CSI in the Downlink

4.2 Gain of Joint Signal Processing under Imperfect CSI

4.3 Trade-Offs in Uplink Multi-Cell Joint Signal Processing
 4.3.1 Different Information Exchange and Cooperation Schemes
 4.3.2 Numerical Results
 4.3.3 Parallels between Theory and Practical Cooperation Schemes

4.4 Degrees of Freedom in Downlink Joint Signal Processing

4.5 Summary

Part II Practical CoMP Schemes

5 CoMP Schemes Based on Interf.-Aware Transceivers or Interf. Coord.

5.1 DL Multi-User Beamforming with IRC
 5.1.1 Introduction
 5.1.2 Downlink System Model
 5.1.3 Linear Receivers
 5.1.4 Imperfect Channel Estimation
 5.1.5 Resource Allocation and Fair User Selection
 5.1.6 Single-Cell Performance
 5.1.7 Multi-Cell Performance under Perfect CSI
 5.1.8 Multi-Cell Performance under Imperfect CSI
 5.1.9 Summary

5.2 Uplink Joint Scheduling and Cooperative Interference Prediction
 5.2.1 Interference-Aware Joint Scheduling
 5.2.2 Cooperative Interference Prediction
 5.2.3 Practical Considerations
 5.2.4 Applicability of Both Schemes to the Downlink
 5.2.5 Summary

5.3 Downlink Coordinated Beamforming
 5.3.1 Introduction
 5.3.2 Single Receive Antenna at the Terminal
 5.3.3 Multiple Receive Antennas at the Terminal
 5.3.4 Summary

6 CoMP Schemes Based on Multi-Cell Joint Signal Processing

6.1 Uplink Centralized Joint Detection
 6.1.1 Introduction
 6.1.2 Joint Detection Algorithms
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.3</td>
<td>Local BS Processing with Limited Backhaul Constraint</td>
<td>87</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Local or Partial Decoding with Limited Backhaul Constraint</td>
<td>90</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Provisions for Uplink Joint Processing in WiMax and LTE</td>
<td>92</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Summary</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>Uplink Decentralized Joint Detection</td>
<td>94</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Practical Decentralized Interference Cancelation Scheme</td>
<td>95</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Performance Assessment</td>
<td>104</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Summary</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>DL Distributed CoMP Approaching Centralized Joint Transmission</td>
<td>108</td>
</tr>
<tr>
<td>6.3.1</td>
<td>System Model</td>
<td>110</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Theoretical Limits for Static Clustering and DPC</td>
<td>111</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Practical (Linear) Precoding</td>
<td>113</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Scheme for Distributed, Centralized Joint Transmission</td>
<td>115</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Summary</td>
<td>121</td>
</tr>
<tr>
<td>6.4</td>
<td>Downlink Decentralized Multi-User Transmission</td>
<td>121</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Decentralized Beamforming with Limited CSIT</td>
<td>122</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Multi-cell Beamforming with Limited Data Sharing</td>
<td>130</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Summary</td>
<td>136</td>
</tr>
</tbody>
</table>

Part III Challenges Connected to CoMP

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Clustering</td>
<td>139</td>
</tr>
<tr>
<td>7.1</td>
<td>Static Clustering Concepts</td>
<td>141</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Non-Overlapping Clusters</td>
<td>142</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Overlapping Clusters</td>
<td>145</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Resulting Geometries</td>
<td>146</td>
</tr>
<tr>
<td>7.2</td>
<td>Self-Organizing Clustering Concepts</td>
<td>148</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Self-Organizing Network Concepts in 3GPP LTE</td>
<td>148</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Adaptive Clustering Algorithms</td>
<td>149</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Simulation Results</td>
<td>152</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Signaling and Control Procedures</td>
<td>157</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary</td>
<td>159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Synchronization</td>
<td>161</td>
</tr>
<tr>
<td>8.1</td>
<td>Synchronization Concepts</td>
<td>161</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Synchronization Terminology</td>
<td>161</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Network Synchronization</td>
<td>163</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Satellite-Based Synchronization</td>
<td>165</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Endogenous Distributed Wireless Carrier Synchronization</td>
<td>166</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Summary</td>
<td>169</td>
</tr>
<tr>
<td>8.2</td>
<td>Imperfect Sync in Time: Perf. Degradation and Compensation</td>
<td>170</td>
</tr>
<tr>
<td>8.2.1</td>
<td>MIMO OFDM Transmission with Asynchronous Interference</td>
<td>173</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Interf.-Aware Multi-User Joint Detection and Transmission</td>
<td>176</td>
</tr>
</tbody>
</table>
8.2.3 System Level SINR Analysis 178
8.2.4 Summary 181
8.3 Imperfect Sync in Frequency: Perf. Degradation and Compensation 181
 8.3.1 Downlink Analysis 182
 8.3.2 Uplink Analysis 189
 8.3.3 Summary 192

9 Channel Knowledge 193
 9.1 Channel Estimation for CoMP 193
 9.1.1 Channel Estimation - Single Link 194
 9.1.2 Channel Estimation for CoMP 202
 9.1.3 Multi-Cell Channel Estimation 204
 9.1.4 Uplink Channel Estimation 206
 9.1.5 Summary 208
 9.2 Channel State Information Feedback to the Transmitter 208
 9.2.1 Transmission Model 210
 9.2.2 Sum-Rate Performance Measure 211
 9.2.3 Channel Vector Quantization (CVQ) 211
 9.2.4 Minimum Euclidean Distance Based CVQ 213
 9.2.5 Maximum SINR Based CVQ 214
 9.2.6 Pseudo-Maximum SINR based CVQ 215
 9.2.7 Application to Zero-Forcing (ZF) Precoding 216
 9.2.8 Resource Allocation 216
 9.2.9 Simulation Results 216
 9.2.10 Summary 218

10 Efficient and Robust Algorithm Implementation 219
 10.1 Robust and Flexible Base Station Precoding Implementation 219
 10.1.1 System Model 220
 10.1.2 Transmit Filter Eigendecomposition 221
 10.1.3 Transmit Filter Computations 222
 10.1.4 The Order-Recursive Filter in Details 224
 10.1.5 Example: SINR as Function of the Condition Number 226
 10.1.6 Summary 227
 10.2 Low-Complexity Terminal-Side Receiver Implementation 227
 10.2.1 Introduction to Interference Rejection Combining (IRC) 228
 10.2.2 IRC with Known Channel and Interference Covariance 231
 10.2.3 Implementation Losses from Imperfect Channel Estimation 233
 10.2.4 Losses from Spatial Interf.-and-Noise Covariance Estimation 237
 10.2.5 Losses from Channel and Interference Estimation Errors 241
 10.2.6 Summary 241
11 Scheduling, Signaling and Adaptive Usage of CoMP

11.1 Centralized Scheduling for CoMP
 11.1.1 Introduction
 11.1.2 System Model
 11.1.3 Centralized Scheduling Problems
 11.1.4 Analyses and Results
 11.1.5 Summary

11.2 Decentralized Radio Link Control and Inter-BS Signaling
 11.2.1 Resource Allocation
 11.2.2 Link Adaptation
 11.2.3 Radio Link Measurements
 11.2.4 Uplink Power Control
 11.2.5 Uplink Timing Advance
 11.2.6 HARQ-related Timing Constraints for UL CoMP
 11.2.7 Handover
 11.2.8 Inter-BS Signaling
 11.2.9 Summary

11.3 Ad-hoc CoMP
 11.3.1 Introduction
 11.3.2 Ad-Hoc CoMP With More Accurate CSI
 11.3.3 Ad-Hoc CoMP with CSI Impairments
 11.3.4 Ad-Hoc CoMP and HARQ
 11.3.5 Summary

12 Backhaul

12.1 Fund. Limits of Interf. Mitigation with Limited Backhaul Coop.
 12.1.1 Introduction
 12.1.2 Uplink Scenario: Receiver Cooperation
 12.1.3 Downlink Scenario: Transmitter Cooperation
 12.1.4 UL-DL Reciprocity and Generalized Degrees of Freedom
 12.1.5 Summary

12.2 Backhaul Requirements of Practical CoMP Schemes
 12.2.1 Types of Backhaul Data and Scaling Laws
 12.2.2 Specific Backhaul Requirements of Exemplary CoMP Schemes
 12.2.3 Backhaul Latency Requirements
 12.2.4 Backhaul Topology Considerations
 12.2.5 Summary

12.3 CoMP Backhaul Infrastructure Concepts
 12.3.1 Ethernet
 12.3.2 Passive Optical Network
 12.3.3 Digital Subscriber Line
 12.3.4 Microwave
 12.3.5 The X2 Interface
 12.3.6 Backhaul Topology Concepts
Part IV Performance Assessment

13 Field Trial Results

13.1 Real-time Impl. and Trials of Adv. Receivers and UL CoMP
 13.1.1 Real-time Implementation and Lab Tests
 13.1.2 Uplink Successive Interference Cancelation (SIC) Receiver
 13.1.3 Uplink Macro Diversity Trials with Distributed RRHs
 13.1.4 Summary

13.2 Assessing the Gain of Uplink CoMP in a Large-Scale Field Trial
 13.2.1 Measurement Setup
 13.2.2 Signal Processing Architecture and Evaluation Concept
 13.2.3 Noise Estimation
 13.2.4 Channel Equalization
 13.2.5 Field Trial Results
 13.2.6 Summary

13.3 Real-time Implementation and Field Trials for Downlink CoMP
 13.3.1 Introduction
 13.3.2 Enabling Features
 13.3.3 Real-time Implementation
 13.3.4 Field Trials
 13.3.5 Summary

13.4 Predicting Pract. Achievable DL CoMP Gains over Larger Areas
 13.4.1 Setup and Closed-Loop System Design
 13.4.2 Measurement and Evaluation Methodology
 13.4.3 Measurement Campaign
 13.4.4 Summary

13.5 Lessons Learnt Through Field Trials

14 Performance Prediction of CoMP in Large Cellular Systems

14.1 Simulation and Link-2-System Mapping Methodology
 14.1.1 General Simulation Assumptions and Modeling
 14.1.2 Channel Models and Antenna Models
 14.1.3 Transceiver Techniques
 14.1.4 Link-to-System Interface
 14.1.5 Key Performance Indicators
 14.1.6 Summary

14.2 Obtaining Chn. Model Params. via Chn. Sounding or Ray-Tracing
 14.2.1 Large-Scale-Parameters
 14.2.2 Measurement-based Parameter Estimation
 14.2.3 Ray-Tracing based Parameter Simulation
 14.2.4 Comparison between Measurements and Ray-Tracing
14.3 Uplink Simulation Results

14.3.1 Compared Schemes 387
14.3.2 Simulation Assumptions and Parameters 389
14.3.3 Backhaul Traffic 391
14.3.4 Simulation Results 392
14.3.5 Summary 395

14.4 Downlink Simulation Results

14.4.1 Compared Schemes 396
14.4.2 Simulation Assumptions and Parameters 397
14.4.3 Detailed Analysis of Coordinated Scheduling/Beamforming 398
14.4.4 Backhaul Traffic 406
14.4.5 Simulation Results 406
14.4.6 Summary 408

Part V Outlook and Conclusions 409

15 Outlook

15.1 Using CoMP for Terminal Localization

15.1.1 Localization based on the Signal Propagation Delay 411
15.1.2 Further Localization Methods 416
15.1.3 Localization in B3G Standards 418
15.1.4 Summary 422

15.2 Relay-Assisted Mobile Communication using CoMP

15.2.1 Introduction 423
15.2.2 Reference Scenario 424
15.2.3 System and Protocol Description 425
15.2.4 Trade-Offs in Relay Networks 427
15.2.5 Numerical Evaluation of CoMP and Relaying 428
15.2.6 Cost/Benefit Trade-Off 428
15.2.7 Energy/Benefit Trade-Off 429
15.2.8 Computation/Transmission Power Trade-Off 430
15.2.9 Summary 432

15.3 Next Generation Cellular Network Planning and Optimization

15.3.1 Introduction 432
15.3.2 Classical Cellular Network Planning and Optimization 433
15.3.3 Physical Characterization of Capacity Gains through CoMP 435
15.3.4 Summary 443

15.4 Energy-Efficiency Aspects of CoMP

15.4.1 System Model 444
15.4.2 Effective Transmission Rates 447
15.4.3 Backhauling 448
15.4.4 Energy Consumption of Cellular Base Stations 449
15.4.5 System Evaluation 451
15.4.6 Summary 453

16 Summary and Conclusions 455
16.1 Summary of this Book 455
 16.1.1 Most Promising CoMP Schemes and Potential Gains 455
 16.1.2 Key Challenges Identified 457
16.2 Conclusions 458
 16.2.1 About this Book 459
 16.2.2 CoMP’s Place in the LTE-Advanced Roadmap and Beyond 460

References 461
Index 479