Contents

Preface \(xi \)

CHAPTER 1

Introduction

1.1 Historical Overview \(1 \)
1.2 Classification of Radio Waves by Frequency Bands \(3 \)
1.3 The Earth’s Atmosphere and Structure \(5 \)
1.4 Classification of Radio Waves by Its Propagation Mechanisms \(10 \)
1.5 Interferences in RF Transmission Links \(14 \)

Problems \(17 \)

References \(18 \)

CHAPTER 2

Basics of Electromagnetic Waves Theory

2.1 Electromagnetic Process \(21 \)
2.1.1 Maxwell’s Equations of Electrodynamics \(21 \)
2.1.2 Boundary Conditions of Electrodynamics \(25 \)
2.1.3 Time-Harmonic Electromagnetic Process—Classification of Media by Conductivity \(30 \)
2.2 Free Propagation of Uniform Plane Radio Waves \(34 \)
2.2.1 Uniform Plane Wave in Lossless Medium \(38 \)
2.2.2 Uniform Plane Wave in Lossy Medium \(39 \)
2.3 Polarization of the Radio Waves \(45 \)
2.4 Reflection and Refraction of Plane Radio Wave from the Boundary of Two Media \(49 \)
2.4.1 Normal Incidence on a Plane Boundary \(51 \)
2.4.2 Oblique Incidence of Vertically Polarized Radio Wave \(53 \)
2.4.3 Oblique Incidence of Horizontally Polarized Radio Wave \(56 \)
2.4.4 Reflection of the Radio Wave with Arbitrary Polarization \(57 \)
2.4.5 Power Reflection and Transmission \(58 \)
2.4.6 Reflection of the Radio Wave from the Boundary of Nonideal Dielectric Medium \(60 \)
2.5 Radiation from Infinitesimal Electric Current Source: Spherical Waves \(61 \)
2.6 Spatial Area Significant for Radio Waves Propagation \(63 \)
2.6.1 Principle of Huygens-Kirchhoff \(63 \)
2.6.2 Fresnel Zones \(65 \)
2.6.3 Knife-Edge Diffraction \(70 \)
2.6.4 Practical Applications of the Fresnel Zones Concept \(75 \)
CHAPTER 3
Basics of Antennas for RF Radio Links

3.1 Basic Parameters of Antennas
 3.1.1 Radiation Pattern and Directivity 105
 3.1.2 Radiation Resistance and Loss Resistance 111
 3.1.3 Antenna Effective Length and Effective Area of the Aperture 113

3.2 General Relations in Radio Wave Propagation Theory 117
Problems 122
References 124

CHAPTER 4
Impact of the Earth Surface on Propagation of Ground Waves

4.1 Propagation Between Antennas Elevated Above the Earth's Surface: Ray-Trace Approach
 4.1.1 Flat Earth Approximation Case Study 126
 4.1.2 Propagation over the Spherical Earth Surface 134
 4.1.3 Specifics of Propagation over a Rough and Hilly Terrain 143
 4.1.4 Optimal Path Clearance and Choice of the Antenna Elevations 147
 4.1.5 Propagation Prediction Models in Urban, Suburban, and Rural Areas 149

4.2 Propagation Between Ground-Based Antennas over the Flat Earth
 4.2.1 Antennas over the Infinite, Perfect Ground Plane 160
 4.2.2 Leontovich Approximate Boundary Conditions and Structure of Radio Waves Near the Earth's Surface 163
 4.2.3 Propagation over the Real Homogeneous Flat Earth 169
 4.2.4 Propagation Along the Real Inhomogeneous Flat Earth: Coastal Refraction 173

4.3 Asymptotic Diffraction Theory of Propagation over the Spherical Earth Surface
 4.3.1 Basic Concepts 178
 4.3.2 Propagation Between Ground-Based Antennas 183
 4.3.3 Propagation Between Elevated Antennas 189
 4.3.4 Specifics of Propagation Estimates in Penumbra Zone 191
Problems 196
References 197
CHAPTER 5
Atmospheric Effects in Radio Wave Propagation

5.1 Dielectric Permittivity and Conductivity of the Ionized Gas
5.2 Regular Refraction of the Radio Waves in the Atmosphere
5.3 Standard Atmosphere and Tropospheric Refraction
5.4 Reflection and Refraction of the Sky Waves in the Ionosphere
5.5 The Impact of Earth’s Magnetic Field on Propagation of the Radio Waves in the Ionosphere
 5.5.1 Longitudinal Propagation of the Radio Wave
 5.5.2 Transverse Propagation of the Radio Wave
 5.5.3 Propagation of the Radio Wave Arbitrary Oriented Relative to the Earth’s Magnetic Field
 5.5.4 Reflection and Refraction of Radio Waves in the Magneto-Active Ionosphere
5.6 Over-the-Horizon Propagation of the Radio Waves by the Tropospheric Scattering Mechanism
 5.6.1 Secondary Tropospheric Radio Links
 5.6.2 Analytical Approaches in Description of the Random Tropospheric Scatterings
 5.6.3 Physical Interpretation of Tropospheric Scatterings
 5.6.4 Effective Scattering Cross-Section of the Turbulent Troposphere
 5.6.5 Statistical Models of Tropospheric Turbulences
 5.6.6 Propagation Factor on Secondary Tropospheric Radio Links
 5.6.7 The Specifics of the Secondary Tropospheric Radio Links Performance
5.7 Attenuation of the Radio Waves in the Atmosphere
 5.7.1 Attenuations in Troposphere
 5.7.2 Attenuations in Ionosphere
Problems
References
Appendix 5A Volumetric Spectrum for Autocorrelation Function of Statistically Homogeneous and Isotropic Random Field

CHAPTER 6
Receiving of the Radio Waves: Basic Outlines

6.1 Multiplicative Interferences (Signal Fades)
 6.1.1 Fluctuation Processes and Stability of Radio Links
 6.1.2 Fast Fading Statistical Distributions
6.1.3 Slow Fading Statistical Distribution 302
6.1.4 Combined Distribution of Fast and Slow Fades 307

6.2 Additive Interferences (Noises) 314
6.2.1 Internal Noises of One- and Two-Port Networks 314
6.2.2 Noise Figure and Noise Temperature of the Cascaded Two-Port Networks 317
6.2.3 Noise Figure of the Passive Two-Port Networks 319
6.2.4 Antenna Noise Temperature 322
6.2.5 Receiver Sensitivity and Signal Threshold Definition 323
6.2.6 Environmental (External) Noise 325

6.3 Methods of Improvement of the Radio Wave Reception Performance 333
6.3.1 Noise-Suppressing Modems in Analog CW Systems 334
6.3.2 Use of Spread-Spectrum Discrete Signals 336
6.3.3 Diversity Reception Technique 340
Problems 346
References 348
Selected Bibliography 349

List of Symbols 351

Acronyms 355

About the Author 357

Index 359