Contents

Preface ix

Conventions and Notations xiv

1 An Introduction to Mathematica® 1
 1.1 The Very Basics ... 1
 1.2 Basic Arithmetic ... 4
 1.3 Lists and Matrices ... 9
 1.4 Expressions versus Functions 12
 1.5 Plotting and Animations 14
 1.6 Solving Systems of Equations 24
 1.7 Basic Programming ... 28

2 Linear Systems of Equations and Matrices 31
 2.1 Linear Systems of Equations 31
 2.2 Augmented Matrix of a Linear System and Row Operations . 44
 2.3 Some Matrix Arithmetic 54

3 Gauss–Jordan Elimination and Reduced Row Echelon Form 69
 3.1 Gauss–Jordan Elimination and \textit{rref} 69
 3.2 Elementary Matrices ... 81
 3.3 Sensitivity of Solutions to Error in the Linear System 92

4 Applications of Linear Systems and Matrices 105
 4.1 Applications of Linear Systems to Geometry 105
 4.2 Applications of Linear Systems to Curve Fitting 115
 4.3 Applications of Linear Systems to Economics 122
 4.4 Applications of Matrix Multiplication to Geometry 127
 4.5 An Application of Matrix Multiplication to Economics ... 135
5 Determinants, Inverses, and Cramer’s Rule 143
5.1 Determinants and Inverses from the Adjoint Formula 143
5.2 Finding Determinants by Expanding along Any Row or Column 161
5.3 Determinants Found by Triangularizing Matrices 173
5.4 \(LU\) Factorization 185
5.5 Inverses from \(rref\) 192
5.6 Cramer’s Rule 197

6 Basic Vector Algebra Topics 207
6.1 Vectors 207
6.2 Dot Product 221
6.3 Cross Product 233
6.4 Vector Projection 242

7 A Few Advanced Vector Algebra Topics 255
7.1 Rotations in Space 255
7.2 “Rolling” a Circle along a Curve 265
7.3 The TNB Frame 275

8 Independence, Basis, and Dimension for Subspaces of \(\mathbb{R}^n\) 281
8.1 Subspaces of \(\mathbb{R}^n\) 281
8.2 Independent and Dependent Sets of Vectors in \(\mathbb{R}^n\) 298
8.3 Basis and Dimension for Subspaces of \(\mathbb{R}^n\) 310
8.4 Vector Projection onto a Subspace of \(\mathbb{R}^n\) 320
8.5 The Gram–Schmidt Orthonormalization Process 331

9 Linear Maps from \(\mathbb{R}^n\) to \(\mathbb{R}^m\) 341
9.1 Basics about Linear Maps 341
9.2 The Kernel and Image Subspaces of a Linear Map 353
9.3 Composites of Two Linear Maps and Inverses 361
9.4 Change of Bases for the Matrix Representation of a Linear Map 368

10 The Geometry of Linear and Affine Maps 383
10.1 The Effect of a Linear Map on Area and Arclength in Two Dimensions 383
10.2 The Decomposition of Linear Maps into Rotations, Reflections, and Rescalings in \(\mathbb{R}^2\) 401
10.3 The Effect of Linear Maps on Volume, Area, and Arclength in \(\mathbb{R}^3\) 409
10.4 Rotations, Reflections, and Rescalings in Three Dimensions 421
10.5 Affine Maps 431
Contents

11 Least-Squares Fits and Pseudoinverses 443
- 11.1 Pseudoinverse to a Nonsquare Matrix and Almost Solving an Overdetermined Linear System 443
- 11.2 Fits and Pseudoinverses 454
- 11.3 Least-Squares Fits and Pseudoinverses 469

12 Eigenvalues and Eigenvectors 481
- 12.1 What Are Eigenvalues and Eigenvectors, and Why Do We Need Them? 481
- 12.2 Summary of Definitions and Methods for Computing Eigenvalues and Eigenvectors as Well as the Exponential of a Matrix 496
- 12.3 Applications of the Diagonalizability of Square Matrices 500
- 12.4 Solving a Square First-Order Linear System of Differential Equations 516
- 12.5 Basic Facts about Eigenvalues, Eigenvectors, and Diagonalizability 552
- 12.6 The Geometry of the Ellipse Using Eigenvalues and Eigenvectors 566
- 12.7 A Mathematica Eigen-Function 586

Bibliographic Material 591

Indexes 593
- Keyword Index 593
- Index of Mathematica Commands 597