Introduction to Practice of Molecular Simulation
Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative Particle Dynamics

Akira Satoh
Akita Prefectural University
Japan
Contents

Preface ix

1. **Outline of Molecular Simulation and Microsimulation Methods** 1
 1.1 Molecular Dynamics Method 1
 1.1.1 Spherical Particle Systems 2
 1.1.2 Nonspherical Particle Systems 5
 1.2 Monte Carlo Method 11
 1.3 Brownian Dynamics Method 15
 1.4 Dissipative Particle Dynamics Method 19
 1.5 Lattice Boltzmann Method 24

2. **Outline of Methodology of Simulations** 29
 2.1 Initial Positions 29
 2.1.1 Spherical Particle Systems 29
 2.1.2 Nonspherical Particle Systems 32
 2.2 Initial Velocities 35
 2.2.1 Spherical Particle Systems 35
 2.2.2 Nonspherical Particle Systems 37
 2.3 Reduction Methods of Computation Time 39
 2.3.1 Cutoff Distance 39
 2.3.2 Cell Index Method 41
 2.3.3 Verlet Neighbor List Method 42
 2.4 Boundary Conditions 43
 2.4.1 Periodic Boundary Condition 43
 2.4.2 Lees—Edwards Boundary Condition 45

3. **Practice of Molecular Dynamics Simulations** 49
 3.1 Diffusion Phenomena in a System of Light and Heavy Molecules 49
 3.1.1 Physical Phenomena of Interest 50
 3.1.2 Specification of Problems in Equations 50
 3.1.3 Verlet Algorithm 51
 3.1.4 Parameters for Simulations 52
 3.1.5 Results of Simulations 54
 3.1.6 Simulation Program 55
3.2 Behavior of Rod-like Particles in a Simple Shear Flow
 3.2.1 Physical Phenomena of Interest
 3.2.2 Particle Model
 3.2.3 Equation of Motion and Molecular Dynamics Algorithm
 3.2.4 Modeling of Steric Repulsive Interaction
 3.2.5 Nondimensionalization of Basic Equations
 3.2.6 Treatment of the Criteria for Particle Overlap in Simulations
 3.2.7 Parameters for Simulations
 3.2.8 Results of Simulations
 3.2.9 Simulation Program

4 Practice of Monte Carlo Simulations
 4.1 Orientational Phenomena of Rod-like Particles in an
 Applied Magnetic Field
 4.1.1 Physical Phenomena of Interest
 4.1.2 Specification of Problems in Equations
 4.1.3 Canonical Monte Carlo Algorithm
 4.1.4 Parameters for Simulations
 4.1.5 Results of Simulations
 4.1.6 Simulation Program
 4.2 Aggregation Phenomena in a Dispersion of Plate-like Particles
 4.2.1 Physical Phenomena of Interest
 4.2.2 Particle Model
 4.2.3 Criterion of the Particle Overlap
 4.2.4 Canonical Monte Carlo Algorithm
 4.2.5 Treatment of the Criterion of the Particle Overlap in
 Simulations
 4.2.6 Particle-Fixed Coordinate System and the Absolute
 Coordinate System
 4.2.7 Attempt of Small Angular Changes in the Particle
 Axis and the Magnetic Moment
 4.2.8 Parameters for Simulations
 4.2.9 Results of Simulations
 4.2.10 Simulation Program

5 Practice of Brownian Dynamics Simulations
 5.1 Sedimentation Phenomena of Lennard-Jones Particles
 5.2 Specification of Problems in Equations
 5.3 Brownian Dynamics Algorithm
 5.4 Parameters for Simulations
 5.5 Results of Simulations
 5.6 Simulation Program
6 Practice of Dissipative Particle Dynamics Simulations
 6.1 Aggregation Phenomena of Magnetic Particles 187
 6.2 Specification of Problems in Equations 187
 6.2.1 Kinetic Equation of Dissipative Particles 187
 6.2.2 Model of Particles 189
 6.2.3 Model Potential for Interactions Between Dissipative and Magnetic Particles 190
 6.2.4 Nondimensionalization of the Equation of Motion and Related Quantities 191
 6.3 Parameters for Simulations 193
 6.4 Results of Simulations 194
 6.5 Simulation Program 197

7 Practice of Lattice Boltzmann Simulations 219
 7.1 Uniform Flow Around a Two-Dimensional Circular Cylinder 219
 7.2 Specification of Problems in Equations 220
 7.3 Boundary Conditions 221
 7.4 Various Treatments in the Simulation Program 223
 7.4.1 Definition and Evaluation of the Drag Coefficient 223
 7.4.2 Choice of the Procedures by Coloring Lattice Sites 224
 7.4.3 Treatment of Interactions on the Cylinder Surface 225
 7.4.4 Evaluation of the Velocity and Density 225
 7.5 Nondimensionalization of the Basic Equations 226
 7.6 Conditions for Simulations 227
 7.6.1 Initial Distribution 227
 7.6.2 Parameters for Simulations 227
 7.7 Results of Simulations 227
 7.8 Simulation Program 231

8 Theoretical Background of Lattice Boltzmann Method 255
 8.1 Equilibrium Distribution 255
 8.1.1 D2Q9 Model 257
 8.1.2 D3Q19 Model 264
 8.2 Navier—Stokes Equation 271
 8.3 Body Force 275
 8.4 Boundary Conditions 277
 8.4.1 Bounce-back Rule 277
 8.4.2 BFL Method 279
 8.4.3 YMLS Method 281
 8.4.4 Other Methods 282
 8.5 Force and Torque Acting on Particles 282
 8.6 Nondimensionalization 283
Appendix 1: Chapman—Enskog Expansion
Appendix 2: Generation of Random Numbers According to Gaussian Distribution
Appendix 3: Outline of Basic Grammars of FORTRAN and C Languages
Appendix 4: Unit Systems of Magnetic Materials
How to Acquire Simulation Programs
References