Microwave Materials for Wireless Applications

David B. Cruickshank
Contents

Preface

Preface

Acknowledgments

Acknowledgments

Introduction

Introduction

1 Garnets

1.1 Introduction

1.2 Garnet Structure and Chemistry

1.3 Magnetism and Ferrimagnetism

1.4 Magnetic Ions Behaving Badly

1.5 Lanthanides and Dodecahedral Substitution

1.6 Octahedral Substitution

1.6.1 Nonmagnetic Octahedral Substitution

1.6.2 Manganese (Mn) Substitution

1.6.3 Cobalt (Co) Substitution

1.7 Tetrahedral Substitution

1.7.1 Aluminum (Al)

1.7.2 Gallium (Ga)

1.7.3 Vanadium (V)
1.8 Mixed Systems 17
1.8.1 Low Firing Temperature Garnets 18
1.9 Rare Earth Substitution 18
1.10 Summary 19

References 20
Selected Bibliography 21

2 Spinels 23

2.1 Introduction 23
2.2 Nickel Spinels 25
2.2.1 Overview of Nickel Spinel Applications 26
2.2.2 Nickel Ferrites Above 10 GHz 31
2.3 Magnesium Spinels 32

2.4 Lithium Ferrite 33
2.5 Summary 36

References 36
Selected Bibliography 37

3 Absorbers 39

3.1 Introduction 39
3.2 Ni and NiZn Ferrite Absorbers 40
3.3 Water as an Absorber 44
3.4 Barium Titanate Piezoelectrics 46
3.5 Silicon Carbide Absorbers 48
3.6 Magnetic Metal Polymer Composite Materials 49
3.7 Hexagonal Ferrite Absorbers 53
Contents

3.8 Summary 53

References 53

4 Plastics and Plastic Ceramic Composite Materials 57

4.1 Introduction 57

4.2 Plastics and Hydrocarbon Polymers 58

4.2.1 Hydrocarbon-Based Polymers 58

4.2.2 Hydrocarbons with Aromatic Side Chains 59

4.3 Fluorocarbon-Based Polymers 61

4.4 Structural Thermoplastics 64

4.5 Epoxies 65

4.6 Silicones 67

4.7 Polyurethanes 70

4.8 Filled Polymers 70

4.8.1 Types of Fillers 70

4.8.2 Filled Polyolefins 73

4.8.3 Filled Fluorocarbons 73

4.8.4 Filled High-Temperature Polymers 74

4.8.5 Filled Epoxies for Laminates 74

4.9 Summary 75

References 75

5 Low Dielectric Constant Ceramic Dielectrics 77

5.1 Introduction to Ceramic Dielectrics 77

5.2 Measurement 78

5.3 Applications 78

5.4 Silica and Silicates 80
5.4.1 The Range of Si-O–Based Dielectric Materials by Using Silicates 81

5.5 High-Temperature and High-Conductivity Materials 83
5.5.1 Nitrides, Oxides, and Fluorides 83
5.5.2 Alumina (Al₂O₃) 84
5.5.3 Boron Nitride (BN) 85
5.5.4 Beryllium Oxide (BeO) 86
5.5.5 Aluminum Nitride (AlN) 86
5.5.6 Diamond 87

5.6 Dielectrics for Thick Film and Low Temperature Cofired Ceramic (LTCC) Applications 87

5.7 Summary 89
References 89
Selected Bibliography 90

6 High Dielectric Constant Dielectrics 91

6.1 Introduction 91

6.2 Dielectrics with Dielectric Constants in the Range 20 to 55 92

6.3 The BaTi₄O₉/Ba₂Ti₉O₂₀ System 94

6.4 The Zirconium Titanate/Zirconium Tin Titanate System (ZrTiO₄/(Zr,Sn)TiO₄) 95

6.5 Perovskite Materials 95

6.6 High-Q Perovskites 98

6.7 Temperature-Stable Dielectrics with Dielectric Constants Greater Than 55 99

6.8 Commercially Available TTBs 102
References 103
Selected Bibliography 104
Contents

7 Metals at Microwave Frequencies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>7.2</td>
<td>Application of Metals to Microwave Transmission Lines</td>
<td>108</td>
</tr>
<tr>
<td>7.3</td>
<td>Copper</td>
<td>108</td>
</tr>
<tr>
<td>7.4</td>
<td>Aluminum</td>
<td>112</td>
</tr>
<tr>
<td>7.5</td>
<td>Silver</td>
<td>113</td>
</tr>
<tr>
<td>7.6</td>
<td>Gold</td>
<td>114</td>
</tr>
<tr>
<td>7.7</td>
<td>Relative Losses of Metals in Microstrip and Waveguide Transmission Lines</td>
<td>114</td>
</tr>
<tr>
<td>7.8</td>
<td>Nickel</td>
<td>115</td>
</tr>
<tr>
<td>7.9</td>
<td>Steels</td>
<td>116</td>
</tr>
<tr>
<td>7.10</td>
<td>Magnetic Temperature-Compensating Alloys</td>
<td>116</td>
</tr>
<tr>
<td>7.11</td>
<td>Metal Alloys with Low or Zero Expansion Coefficient</td>
<td>116</td>
</tr>
<tr>
<td>7.12</td>
<td>Metal Plating on Plastics</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Selected Bibliography</td>
<td>119</td>
</tr>
</tbody>
</table>

8 Ferrite Devices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>8.2</td>
<td>Below-Resonance Junction Devices—Selecting the Correct Magnetization</td>
<td>123</td>
</tr>
<tr>
<td>8.4</td>
<td>Magnetization Against Temperature</td>
<td>127</td>
</tr>
<tr>
<td>8.5</td>
<td>Insertion Loss Considerations Below Resonance</td>
<td>128</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>8.6</td>
<td>Power Handling in Below-Resonance Junction Devices</td>
<td>130</td>
</tr>
<tr>
<td>8.7</td>
<td>Intermodulation in Below-Resonance Junction Devices</td>
<td>131</td>
</tr>
<tr>
<td>8.8</td>
<td>Microstrip Below-Resonance Devices</td>
<td>133</td>
</tr>
<tr>
<td>8.9</td>
<td>Below-Resonance Linear Devices</td>
<td>133</td>
</tr>
<tr>
<td>8.10</td>
<td>Switching and Latching Devices</td>
<td>134</td>
</tr>
<tr>
<td>8.11</td>
<td>Temperature Considerations</td>
<td>139</td>
</tr>
<tr>
<td>8.13</td>
<td>Above-Resonance Devices</td>
<td>139</td>
</tr>
<tr>
<td>8.14</td>
<td>Power Handling in Above-Resonance Devices</td>
<td>142</td>
</tr>
<tr>
<td>8.15</td>
<td>Above-Resonance Phase Shifters</td>
<td>142</td>
</tr>
<tr>
<td>8.14</td>
<td>Devices at Resonance</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Selected Bibliography</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Resonators and Filters Based on Dielectrics</td>
<td>145</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>9.2</td>
<td>Circuit-Based Resonators</td>
<td>145</td>
</tr>
<tr>
<td>9.3</td>
<td>Coaxial Resonators</td>
<td>147</td>
</tr>
<tr>
<td>9.4</td>
<td>TE-Based Dielectric Resonator Applications</td>
<td>149</td>
</tr>
<tr>
<td>9.5</td>
<td>Dielectric Resonator Loaded Cavities</td>
<td>151</td>
</tr>
<tr>
<td>9.6</td>
<td>Dielectric Support Materials</td>
<td>155</td>
</tr>
<tr>
<td>9.7</td>
<td>TM Dielectric Resonator-Based Cavities</td>
<td>156</td>
</tr>
<tr>
<td>9.8</td>
<td>Intermodulation in Dielectric Loaded Cavities</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>158</td>
</tr>
</tbody>
</table>
Selected Bibliography 158

10 Antennas and Radomes

10.1 Introduction 159
10.2 Ferrite Rod Antennas for VHF and UHF 159
10.3 Patch Antennas 161
10.4 Ferrite Patch Antennas 163
10.5 Planar Inverted-F Antennas (PIFA) 164
10.6 Dielectric Resonator Antennas 164
10.7 Metal Antennas 165
10.8 Radomes 165
10.8.1 Half-Wave Radomes 166
10.8.2 A- and C-Sandwich Construction 167
10.9 Foam Radome Materials 167
10.10 Ceramic Materials 168
10.11 Microwave and IR Transparent Radomes 171
10.12 Absorbers for Antennas 172
10.13 Phased-Array Antennas 172
References 172
Selected Bibliography 173

11 Tunable Devices

11.1 Introduction 175
11.2 Magnetic Tuning 175
11.3 Lumped Element Magnetically Tunable Filters 176
11.4 Ferrite Phase Shifters 177
11.5 Magnetically Tunable Microstrip Filters 178
11.5.1 Magnetically Tunable Dielectric Resonator Filters 178
11.6 Single-Crystal YIG Resonators 179
11.7 Epitaxial Thin-Film Magnetically Tuned YIG Devices 182
11.8 Ferroelectric-Tuned Devices 183
11.9 Tunable MEMS Devices 185
11.10 Low Temperature and Cryogenic Devices 186
11.10.1 Magnetic Materials at Low Temperature 186
11.10.2 Dielectrics at Low Temperature 187
11.10.3 Superconductors at Microwave Frequencies 188

References 188

12 Measurement Techniques 191
12.1 Introduction 191
12.2 Dielectric Constant and Loss 191
12.2.1 Perturbation Techniques 193
12.2.2 Dielectric Properties Using Dielectric Resonators 194
12.2.3 Dielectric Temperature Coefficients 197
12.2.4 Low-Frequency Measurements of Dielectric Properties 197
12.2.5 Split Resonator Technique 198
12.3 Magnetization 199
12.3.1 Vibrating Sample Magnetometer 200
12.3.2 AC Magnetization 201
12.4 Line Width Measurements 203
12.4.1 Ferrimagnetic Resonance 203
12.4.2 Spinwave Line Width 205
12.4.3 Effective Line Width and Magnetic Losses 206
12.5 Permeability and Magnetic Loss Spectrum 207

12.6 Intermodulation and Third-Harmonic Distortion Measurement 208

12.7 Density 209

References 209

About the Author 211

Index 213