Contents

PREFACE xvii

CHAPTER 1 INTRODUCTION 1
 1.1 The Microwave Spectrum 1
 1.2 The Domain of Microwave Tubes 2
 1.3 Classical Microwave Tube Types 3
 1.4 Overview of This Book 8
 References 9

CHAPTER 2 STATIC FIELDS PRODUCED BY ELECTRONS 11
 2.1 Electric Field 11
 2.2 Magnetic Field 17

CHAPTER 3 ELECTRON MOTION IN STATIC ELECTRIC FIELDS 19
 3.1 Motion Parallel to Field 19
 3.2 Relativistic Velocity Corrections 20
 3.3 Electric Lenses 22
 3.4 Universal Beam Spread Curve 26

CHAPTER 4 INFLUENCE OF MAGNETIC FIELD ON ELECTRON MOTION 31
 4.1 Electron Motion in a Static Magnetic Field 31
 4.2 Electron Motion in Combined Electric and Magnetic Fields 33
 4.2.1 Perpendicular Fields in Rectangular Coordinates 33
 4.2.2 Axially Symmetric Fields 35

CHAPTER 5 THERMIONIC CATHODES 39
 5.1 Emission Mechanisms 41
 5.1.1 Thermionic Emission 41
 5.1.2 Schottky Effect 45
 5.1.3 Field Emission 47
 5.1.4 Space Charge Limitation 49
 5.2 Evolution of Thermionic Cathodes 54
Contents

7.4 Focusing with Permanent Magnets 155
 7.4.1 Overview 155
 7.4.2 Laminar Flow, No Cathode Flux 157
 7.4.3 Laminar Flow with Cathode Flux 163
 7.4.4 Nonlaminar Flow 167

7.5 Ion Effects in Electron Beams 173
 7.5.1 Examples of Ion Effects 174
 7.5.2 Gas Sources 178
 7.5.3 Ionization 180
 7.5.4 Potential Depression in an Electron Beam 182
 7.5.5 Steady State Effects of Ionization 185
 7.5.6 Low-Frequency Instabilities 189
 7.5.7 High-Frequency Instabilities 192

References 197

CHAPTER 8 BEAM-GAP INTERACTIONS 201
 8.1 Beam Modulation 201
 8.1.1 Gridded (Planar) Gaps 202
 8.1.2 Gridless (Nonplanar) Gaps 204
 8.2 Current Induction 206
 8.2.1 Gridded (Planar) Gaps 206
 8.2.2 Gridless (Nonplanar) Gaps 214
 8.3 Beam Loading 214

References 216

CHAPTER 9 ELECTRON BUNCHING PRODUCED BY A GAP 217
 9.1 Ballistic Bunching 217
 9.2 Bunching with Space Charge Forces 220
 9.3 Large Signal Levels 228

References 235

CHAPTER 10 BASIC KLYSTRONS AND THEIR OPERATION 237
 10.1 The Invention and Basic Operation of the Klystron 239
 10.2 Klystron Cavities 244
 10.2.1 Cavity Operation 244
 10.2.2 Power Coupling 246
 10.2.3 Tuners 248
 10.2.4 Equivalent Circuits and Circuit Parameters 249
 10.2.5 RF Cavity Losses 253
 10.3 Small Signal Operation 254
 10.3.1 Load Representation 256
 10.3.2 Gain Calculation 256
10.4 Power Output Characteristics 260
 10.4.1 Tuning of Conventional Klystrons 261
 10.4.2 Transfer Characteristics 265
References 267

CHAPTER 11 SPECIAL-PURPOSE KLYSTRONS 269
 11.1 High-Efficiency Klystrons 269
 11.2 High-Power Klystrons 273
 11.2.1 Limits on Beam Voltage 275
 11.2.2 Limits on Beam Current 277
 11.2.3 Estimate of Obtainable Power 278
 11.3 Broadband Klystrons 281
 11.3.1 Driver Sections 283
 11.3.2 Output Sections 289
 11.4 Multiple Beam Klystrons 294
 11.5 Extended Interaction Klystrons 304
 11.6 Reflex Klystrons 311
References 313

CHAPTER 12 TRAVELING WAVE TUBES 317
 12.1 Introduction 317
 12.1.1 Early History of the TWT 317
 12.1.2 Basic Operation of the TWT 321
 12.2 Traveling Wave Interaction 325
 12.2.1 RF Current in a Beam 326
 12.2.2 Circuit Equation 327
 12.2.3 The Determinantal Equation 328
 12.2.4 Synchronous Operation 328
 12.2.5 Nonsynchronous Operation 331
 12.2.6 Effect of Circuit Loss 332
 12.2.7 Effect of Space Charge 332
 12.3 High-Level Interaction 335
 12.3.1 Discussion of Interactions 335
 12.3.2 Estimates of Maximum Efficiency 338
 12.3.3 Comment on Computer Modeling 339
 12.3.4 Velocity Tapering 340
References 344

CHAPTER 13 WAVE VELOCITIES AND DISPERSION 347
 13.1 Group and Phase Velocity 347
 13.2 Dispersion 349
 13.2.1 Coaxial Transmission Line 350
Contents

13.2.2 Rectangular Waveguide 350
13.2.3 Periodically Loaded Waveguide 358

CHAPTER 14 HELIX TWTS 363
14.1 Bandwidth 363
 14.1.1 Dispersion 366
 14.1.2 Dispersion Control 367
14.2 Gain 371
 14.2.1 Transitions 372
 14.2.2 Attenuators and Severs 375
14.3 Power 377
 14.3.1 Peak Power 378
 14.3.2 Average Power 383
14.4 Efficiency 389
14.5 Dual-Mode Operation 394
14.6 Microwave Power Modules 396
14.7 Ring Bar and Ring Loop TWTs 398
References 402

CHAPTER 15 COUPLED-CAVITY TWTS 405
15.1 Basic Operating Principles 406
15.2 Coupled-Cavity Structures 408
 15.2.1 Waveguide Approach 408
 15.2.2 Curnow-Gittins Equivalent Circuit Approach 412
 15.2.3 Example of an Application of the Curnow-Gittins Circuit 415
15.3 Fundamental Backward Wave Operation 421
15.4 Fundamental Forward Wave Operation 429
15.5 Terminations and Transitions 430
References 435

CHAPTER 16 COLLECTORS 437
16.1 Power Dissipation 437
16.2 Power Recovery 441
 16.2.1 Power Flow 441
 16.2.2 Power Recovery with a Depressed Collector 444
 16.2.3 Electron Energy Distribution 447
 16.2.4 Spent Beam Power 450
 16.2.5 Effect of Body Current 451
 16.2.6 Multistage Depressed Collectors 453
 16.2.7 Secondary Electrons in Depressed Collectors 458
16.3 Collector Cooling 462
 16.3.1 Conduction Cooling 462

References 402
16.3.2 Convection Cooling 462
16.3.3 Forced-Air Cooling 462
16.3.4 Forced-Flow Liquid Cooling 462
16.3.5 Vapor Phase Cooling 464
16.3.6 Radiation Cooling 465

References 467

CHAPTER 17 CROSSED-FIELD TUBES 469
17.1 Basic Configuration of Crossed-Field Tubes 470
17.2 Electron Flow with No RF Fields 471
Reference 475

CHAPTER 18 CATHODES FOR CROSSED-FIELD TUBES 477
18.1 Introduction 477
18.2 Characteristics of Secondary Emission 478
18.2.1 Energy of Impacting Primary Electrons 479
18.2.2 Angle of Incidence of Primary Electrons 480
18.2.3 Secondary Emitting Properties of Surfaces 481
18.2.4 Energy Distribution of Secondary Electrons 484
18.2.5 Modeling of Secondary Emission Characteristics 485
18.3 Operation of Cathodes in Crossed-Field Devices 486
References 487

CHAPTER 19 MAGNETRONS 489
19.1 Types of Magnetrons 489
19.1.1 Cyclotron-Frequency Magnetrons 489
19.1.2 Negative-Resistance Magnetrons 490
19.1.3 Traveling Wave Magnetrons 491
19.2 Operation of the Traveling Wave Magnetron 494
19.2.1 Hub Formation 494
19.2.2 The Hartree Voltage 497
19.2.3 Spoke Formation 500
19.2.4 RF Circuit Operation 504
19.3 Moding 507
19.4 Coaxial Magnetrons 513
19.5 Inverted Magnetrons 516
19.6 Magnetron Tuning 516
19.7 Output Couplers and Transformers 518
19.8 Cathode and Heater Operation 520
19.9 Performance 522
19.9.1 Voltage-Current Characteristic 522
19.9.2 Frequency Pushing 522
Contents

19.9.3 Frequency Pulling 523
19.9.4 Thermal Drift 525
19.10 Applications of Magnetrons 526
 19.10.1 Conventional Magnetrons 526
 19.10.2 Frequency Agile Magnetrons 527
 19.10.3 Signal Injected Magnetrons 529
 19.10.4 Beacon Magnetrons 532
 19.10.5 Microwave Oven Magnetrons 532
 19.10.6 Industrial Heating Magnetrons 534
 19.10.7 Low-Noise Magnetrons 535
 19.10.8 Relativistic Magnetrons 538
19.11 Summary of Power Capabilities 539
References 540

CHAPTER 20 CROSSED-FIELD AMPLIFIERS 543
20.1 Introduction 543
 20.1.1 Injected-Beam CFAs 543
 20.1.2 Distributed Emission CFAs 544
20.2 CFA Operation 547
 20.2.1 Electron Emission and Hub Formation 547
 20.2.2 Spoke Formation and Growth 549
20.3 CFA Slow Wave Circuits 552
20.4 CFA Performance 557
 20.4.1 Forward Wave CFAs 558
 20.4.2 Backward Wave CFAs 559
 20.4.3 DC Operation 562
 20.4.4 Gain and Operating Limits 563
 20.4.5 CFA Phase Characteristics 567
 20.4.6 Weight and Size Considerations 570
20.5 Power Capabilities 571
20.6 Thermal Considerations 572
20.7 CFA Power Supply Considerations 580
 20.7.1 DC-Operated Supplies 580
 20.7.2 Cathode Pulsing Supplies 580
References 581

CHAPTER 21 GYROTRONS 583
21.1 Introduction 583
21.2 Basic Interaction Mechanism 584
21.3 MIG Configuration and Requirements 590
 21.3.1 MIG Configurations 590
 21.3.2 First-Order Design Procedure 593
21.3.3 MIG Performance 598

21.4 Beam-Wave Interaction 601
 21.4.1 Hollow Cavities 601
 21.4.2 Coaxial Cavities 604
 21.4.3 Mode Converters 606
 21.4.4 Harmonic Operation 609
 21.4.5 Collectors 609

21.5 Gyro-Monotrons (Oscillators) 611
 21.5.1 RF Output Coupling 611
 21.5.2 Second-Harmonic Gyrotrons 613
 21.5.3 Permanent Magnet Gyrotrons 613

21.6 Gyro-Amplifiers 615
 21.6.1 Gyro-Klystrons 616
 21.6.2 Gyro-Twystrons 617
 21.6.3 Gyro-TWTs 617

21.7 Terahertz Gyrotrons 622

References 623

CHAPTER 22 WINDOWS 627
 22.1 Background 627
 22.2 Coaxial Windows 627
 22.3 Waveguide Windows 629
 22.4 Scaling of Windows 636

References 636

CHAPTER 23 NOISE 639
 23.1 Thermal Agitation Noise 639
 23.2 Definitions of Noise Figure 640
 23.3 Overview of Noise Phenomena 641
 23.4 Noise in Electron Guns 642
 23.5 Noise Generation at the Cathode 644
 23.5.1 Shot Noise 644
 23.5.2 Velocity Noise 645
 23.5.3 Other Noise Generation Mechanisms 645
 23.6 The Space Charge Minimum Region 647
 23.6.1 Rack Noise Invariance 647
 23.6.2 Shot Noise Reduction 647
 23.6.3 Other Noise Effects 649
 23.7 Low-Velocity Correlation Region 650
 23.8 High-Voltage Acceleration Region 653
 23.8.1 Noise Space Charge Waves 653
 23.8.2 Impedance Transformation for Low-Noise Tubes 655
23.8.3 Lens Effects 657
23.9 RF Section Noise Phenomena 659
23.9.1 Circuit Loss 659
23.9.2 Partition Noise 659
23.9.3 Secondary Electron Interactions 664
23.9.4 Noise Growth 661
23.9.5 Magnetic Noise Suppression 661
23.10 Other Noise Sources 663
23.11 Minimum Noise Figure of a TWT 664
References 664

CHAPTER 24 NONLINEARITIES AND DISTORTION 667
24.1 Distortion Resulting from Saturation Effects 667
24.1.1 AM/AM Conversion 667
24.1.2 AM/PM Conversion 669
24.1.3 Harmonic Generation 671
24.1.4 Intermodulation Products 673
24.2 Digital Communications 678
24.2.1 QPSK and 16QAM 680
24.2.2 Data Characteristics 682
24.2.3 Amplifier Design to Reduce Distortion 683
24.3 Signal Capturing 686
24.4 Variations with Frequency 687
24.4.1 Broadband Gain Variations 688
24.4.2 Narrowband Gain Variations 688
24.4.3 Phase Nonlinearities or Time Delay Distortion 689
24.5 Pushing and Pulling 690
24.5.1 Amplitude Pushing 691
24.5.2 Phase Pushing 694
24.5.3 Pulling 698
References 699

CHAPTER 25 BREAKDOWN AND PROTECTION 701
25.1 Field Enhancement 703
25.2 DC Breakdown in Vacuum 705
25.2.1 Electrode Phenomena Leading to Breakdown 706
25.2.2 Avoiding Breakdown 719
25.2.3 Vacuum Arcs 722
25.3 DC Breakdown on Insulator Surfaces 726
25.4 RF Breakdown in Vacuum 729
25.4.1 Two-Surface Multipactor with No Magnetic Field 730
25.4.2 Two-Surface Multipactor in Combined Fields 733
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.10.2 Welding</td>
<td>790</td>
</tr>
<tr>
<td>References</td>
<td>793</td>
</tr>
<tr>
<td>APPENDIX C MAGNETICS</td>
<td>795</td>
</tr>
<tr>
<td>C.1 Magnetic Quantities</td>
<td>795</td>
</tr>
<tr>
<td>C.2 Magnetic Circuits</td>
<td>796</td>
</tr>
<tr>
<td>C.3 Magnetic Materials</td>
<td>799</td>
</tr>
<tr>
<td>C.3.1 Ferromagnetic Materials</td>
<td>799</td>
</tr>
<tr>
<td>C.3.2 Normal and Intrinsic Hysteresis Curves</td>
<td>802</td>
</tr>
<tr>
<td>C.3.3 Energy Product</td>
<td>805</td>
</tr>
<tr>
<td>C.3.4 Rare Earth Magnet Materials</td>
<td>806</td>
</tr>
<tr>
<td>C.4 Permanent Magnets</td>
<td>807</td>
</tr>
<tr>
<td>C.4.1 Straight Field Magnets</td>
<td>807</td>
</tr>
<tr>
<td>C.4.2 Periodic Permanent Magnets</td>
<td>808</td>
</tr>
<tr>
<td>C.4.3 Double-Period and Long-Period Focusing</td>
<td>810</td>
</tr>
<tr>
<td>C.5 Pole Pieces</td>
<td>812</td>
</tr>
<tr>
<td>C.6 Electromagnets</td>
<td>814</td>
</tr>
<tr>
<td>References</td>
<td>819</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>821</td>
</tr>
<tr>
<td>About the Author</td>
<td>835</td>
</tr>
<tr>
<td>Index</td>
<td>837</td>
</tr>
</tbody>
</table>