Björn Ebert

Noise-Induced Jitter and Decision Errors in Rapid Single Flux Quantum Electronics
Contents

Abstracts .. III
Acknowledgement .. VII

1 Introduction ... 1

2 Fundamentals of single flux quantum electronics 5
 2.1 Basics of superconductive electronics 5
 2.1.1 Magnetic flux quantization 6
 2.1.2 Josephson effect 6
 2.2 Modeling of Josephson junctions 9
 2.2.1 RCSJ model for time domain simulations 9
 2.2.2 Thermal noise model for time domain simulations 11
 2.2.3 Enhanced RCSJ model 13
 2.3 Fundamental building blocks of RSFQ electronics 14
 2.3.1 Transmission of flux quanta 14
 2.3.2 Storage of flux quanta 15
 2.3.3 Josephson junction comparator 16
 2.4 Selected RSFQ cells for digital circuits 16
 2.4.1 Josephson transmission line 17
 2.4.2 Passive transmission line 18
 2.4.3 DC/SFQ converter 18
 2.4.4 Splitter 19
 2.4.5 Confluence buffer 20
 2.4.6 Delay flip-flop 20
 2.4.7 SFQ/DC converter 22

3 Timing behavior of Josephson transmission lines and oscillators 25
 3.1 Time delay and jitter of a Josephson transmission line 26
 3.1.1 Infinitely long homogenous Josephson transmission line 26
 3.1.2 Numerical evaluation of the timing behavior 28
 3.2 Jitter and phase noise of Josephson oscillators 37
 3.2.1 Modeling of time domain jitter and phase noise 37
 3.2.2 Single Josephson junction oscillator 43
3.2.3 Josephson ring oscillator .. 46

4 Gray zone and timing behavior of Josephson junction comparators 49
 4.1 Josephson comparators without noise sources 50
 4.1.1 Switching and timing behavior at low-speed 50
 4.1.2 High-speed switching process of a noiseless comparator 53
 4.1.3 Switching errors of Josephson comparators 54
 4.2 Josephson comparator with noise sources 55
 4.2.1 Estimation of stochastic values by sample and time averages ... 56
 4.2.2 Definition of the gray zone width 58
 4.2.3 Stochastic properties of the switching time 60
 4.2.4 Trade-off between gray zone width and speed of a comparator ... 62
 4.2.5 Autocovariance function of the output pulse stream 63
 4.3 Optimization of Josephson comparators 64
 4.3.1 Introduction to multiobjective optimization 65
 4.3.2 Cell-based comparator design 66
 4.3.3 Influence of relevant design parameters 66

5 Gray zone measurements of Josephson junction comparators 77
 5.1 Comparator test chips and numerical evaluation of their gray zones ... 78
 5.2 Experimental set-up for gray zone measurements 84
 5.3 Results of the gray zone measurements 87

6 Bit error rate of shift registers due to timing violations 93
 6.1 Timing violations in a delay flip-flop 94
 6.2 Determination of setup and hold times 94
 6.3 Relation between bit error rate and input jitter 100
 6.4 Timing adjustments of a shift register 102

7 On-chip time delay and jitter measurements 107
 7.1 On-chip time delay measurements 107
 7.2 Jitter measurements of Josephson transmission lines 109

8 Conclusions and outlook ... 117

Bibliography ... 120

List of abbreviations and symbols 129