Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Author</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>List of Tables</td>
</tr>
<tr>
<td>I Marine Craft Hydrodynamics</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>1.1 Classification of Models</td>
</tr>
<tr>
<td>1.2 The Classical Models in Naval Architecture</td>
</tr>
<tr>
<td>1.2.1 Maneuvering Theory</td>
</tr>
<tr>
<td>1.2.2 Seakeeping Theory</td>
</tr>
<tr>
<td>1.2.3 Unified Theory</td>
</tr>
<tr>
<td>1.3 Fossen’s Robot-Like Vectorial Model for Marine Craft</td>
</tr>
<tr>
<td>2 Kinematics</td>
</tr>
<tr>
<td>2.1 Reference Frames</td>
</tr>
<tr>
<td>2.2 Transformations between BODY and NED</td>
</tr>
<tr>
<td>2.2.1 Euler Angle Transformation</td>
</tr>
<tr>
<td>2.2.2 Unit Quaternions</td>
</tr>
<tr>
<td>2.2.3 Quaternions from Euler Angles</td>
</tr>
<tr>
<td>2.2.4 Euler Angles from Quaternions</td>
</tr>
<tr>
<td>2.3 Transformations between ECEF and NED</td>
</tr>
<tr>
<td>2.3.1 Longitude and Latitude Transformations</td>
</tr>
<tr>
<td>2.3.2 Longitude and Latitude from ECEF Coordinates</td>
</tr>
<tr>
<td>2.3.3 ECEF Coordinates from Longitude and Latitude</td>
</tr>
<tr>
<td>2.4 Transformations between BODY and FLOW</td>
</tr>
<tr>
<td>2.4.1 Definitions of Course, Heading and Sideslip Angles</td>
</tr>
<tr>
<td>2.4.2 Sideslip and Angle of Attack</td>
</tr>
<tr>
<td>3 Rigid-Body Kinetics</td>
</tr>
<tr>
<td>3.1 Newton–Euler Equations of Motion about CG</td>
</tr>
<tr>
<td>3.1.1 Translational Motion about CG</td>
</tr>
<tr>
<td>3.1.2 Rotational Motion about CG</td>
</tr>
<tr>
<td>3.1.3 Equations of Motion about CG</td>
</tr>
</tbody>
</table>
3.2 Newton–Euler Equations of Motion about CO
 3.2.1 Translational Motion about CO 50
 3.2.2 Rotational Motion about CO 50

3.3 Rigid-Body Equations of Motion
 3.3.1 Nonlinear 6 DOF Rigid-Body Equations of Motion 51
 3.3.2 Linearized 6 DOF Rigid-Body Equations of Motion 56

4 Hydrostatics
 4.1 Restoring Forces for Underwater Vehicles 59
 4.1.1 Hydrostatics of Submerged Vehicles 59
 4.2 Restoring Forces for Surface Vessels 62
 4.2.1 Hydrostatics of Floating Vessels 62
 4.2.2 Linear (Small Angle) Theory for Boxed-Shaped Vessels 64
 4.2.3 Computation of Metacenter Height for Surface Vessels 65
 4.3 Load Conditions and Natural Periods 68
 4.3.1 Decoupled Computation of Natural Periods 68
 4.3.2 Computation of Natural Periods in a 6 DOF Coupled System 69
 4.3.3 Natural Period as a Function of Load Condition 71
 4.4 Ballast Systems 74
 4.4.1 Conditions for Manual Pretrimming 76
 4.4.2 Automatic Pretrimming using Feedback from z, ϕ and θ 78

5 Seakeeping Theory
 5.1 Hydrodynamic Concepts and Potential Theory 82
 5.1.1 Numerical Approaches and Hydrodynamic Codes 84
 5.2 Seakeeping and Maneuvering Kinematics 85
 5.2.1 Seakeeping Reference Frame 85
 5.2.2 Transformation between BODY and SEAKEEPING 86
 5.3 The Classical Frequency-Domain Model 90
 5.3.1 Potential Coefficients and the Concept of Forced Oscillations 90
 5.3.2 Frequency-Domain Seakeeping Models 93
 5.4 Time-Domain Models including Fluid Memory Effects 96
 5.4.1 Cummins Equation in SEAKEEPING Coordinates 96
 5.4.2 Linear Time-Domain Seakeeping Equations in BODY Coordinates 99
 5.4.3 Nonlinear Unified Seakeeping and Maneuvering Model with Fluid Memory Effects 103
 5.5 Case Study: Identification of Fluid Memory Effects 104
 5.5.1 Frequency-Domain Identification using the MSS FDI Toolbox 104

6 Maneuvering Theory
 6.1 Rigid-Body Kinetics 110
 6.2 Potential Coefficients 111
 6.2.1 3 DOF Maneuvering Model 113
 6.2.2 6 DOF Coupled Motions 113
 6.3 Nonlinear Coriolis Forces due to Added Mass in a Rotating Coordinate System 115
 6.3.1 Lagrangian Mechanics 115
 6.3.2 Kirchhoff’s Equations in Vector Form 116
 6.3.3 Added Mass and Coriolis–Centripetal Forces due to the Rotation of BODY Relative to NED 117
 6.4 Viscous Damping and Ocean Current Forces 122
Contents

6.4.1 Linear Viscous Damping 123
6.4.2 Nonlinear Surge Damping 125
6.4.3 Cross-Flow Drag Principle 127
6.5 Maneuvering Equations 128
 6.5.1 Hydrodynamic Mass–Damper–Spring System 128
6.5.2 Nonlinear Maneuvering Equations 130
6.5.3 Linearized Maneuvering Equations 131
7 Models for Ships, Offshore Structures and Underwater Vehicles 133
 7.1 Maneuvering Models (3 DOF) 133
 7.1.1 Nonlinear Maneuvering Models Based on Surge Resistance and Cross-Flow Drag 136
 7.1.2 Nonlinear Maneuvering Models Based on Second-order Modulus Functions 136
 7.1.3 Nonlinear Maneuvering Models Based on Odd Functions 138
 7.1.4 Linearized Maneuvering Models 140
 7.2 Autopilot Models for Heading Control (1 DOF) 142
 7.2.1 Second-Order Nomoto Model (Yaw Subsystem) 142
 7.2.2 First-Order Nomoto Model (Yaw Subsystem) 143
 7.2.3 Nonlinear Extensions of Nomoto’s Model 145
 7.2.4 Pivot Point (Yaw Rotation Point) 146
 7.2.5 Nondimensional Maneuvering and Autopilot Models 148
 7.3 DP Models (3 DOF) 152
 7.3.1 Nonlinear DP Model using Current Coefficients 153
 7.3.2 Linearized DP Model 157
 7.4 Maneuvering Models Including Roll (4 DOF) 158
 7.4.1 The Nonlinear Model of Son and Nomoto 163
 7.4.2 The Nonlinear Model of Blanke and Christensen 164
 7.4.3 Nonlinear Model Based on Low-Aspect Ratio Wing Theory 165
 7.5 Equations of Motion (6 DOF) 167
 7.5.1 Nonlinear 6 DOF Vector Representations in BODY and NED 167
 7.5.2 Symmetry Considerations of the System Inertia Matrix 171
 7.5.3 Linearized Equations of Motion (Vessel Parallel Coordinates) 173
 7.5.4 Transforming the Equations of Motion to a Different Point 176
 7.5.5 6 DOF Models for AUVs and ROVs 182
 7.5.6 Longitudinal and Lateral Models for Submarines 183
8 Environmental Forces and Moments 187
 8.1 Wind Forces and Moments 188
 8.1.1 Wind Forces and Moments on Marine Craft at Rest 188
 8.1.2 Wind Forces and Moments on Moving Marine Craft 191
 8.1.3 Wind Coefficients Based on Flow over a Helmholtz–Kirchhoff Plate 192
 8.1.4 Wind Coefficients for Merchant Ships 194
 8.1.5 Wind Coefficients for Very Large Crude Carriers 195
 8.1.6 Wind Coefficients for Large Tankers and Medium-Sized Ships 195
 8.1.7 Wind Coefficients for Moored Ships and Floating Structures 195
 8.2 Wave Forces and Moments 199
 8.2.1 Sea State Descriptions 200
 8.2.2 Wave Spectra 202
8.2.3 Wave Amplitude Response Model 208
8.2.4 Wave Force Response Amplitude Operators 211
8.2.5 Motion Response Amplitude Operators 213
8.2.6 State-Space Models for Wave Responses 214
8.3 Ocean Current Forces and Moments 221
8.3.1 3-D Irrotational Ocean Current Model 224
8.3.2 2-D Irrotational Ocean Current Model 224

II Motion Control .. 227

9 Introduction .. 229
9.1 Historical Remarks ... 229
9.1.1 The Gyroscope and its Contributions to Ship Control 230
9.1.2 Autopilots .. 231
9.1.3 Dynamic Positioning and Position Mooring Systems 231
9.1.4 Waypoint Tracking and Path-Following Control Systems 232
9.2 The Principles of Guidance, Navigation and Control 232
9.3 Setpoint Regulation, Trajectory-Tracking and Path-Following Control 235
9.4 Control of Underactuated and Fully Actuated Craft 235
9.4.1 Configuration Space .. 236
9.4.2 Workspace and Control Objectives 237
9.4.3 Weathervaning of Underactuated Craft in a Uniform Force Field 238

10 Guidance Systems .. 241
10.1 Target Tracking .. 242
10.1.1 Line-of-Sight Guidance .. 243
10.1.2 Pure Pursuit Guidance .. 244
10.1.3 Constant Bearing Guidance 244
10.2 Trajectory Tracking .. 246
10.2.1 Reference Models for Trajectory Generation 248
10.2.2 Trajectory Generation using a Marine Craft Simulator 251
10.2.3 Optimal Trajectory Generation 253
10.3 Path Following for Straight-Line Paths 254
10.3.1 Path Generation based on Waypoints 255
10.3.2 LOS Steering Laws .. 257
10.4 Path Following for Curved Paths 266
10.4.1 Path Generation using Interpolation Methods 267
10.4.2 Path-Following Kinematic Controller 278

11 Sensor and Navigation Systems 285
11.1 Low-Pass and Notch Filtering 287
11.1.1 Low-Pass Filtering .. 288
11.1.2 Cascaded Low-Pass and Notch Filtering 290
11.2 Fixed Gain Observer Design 292
11.2.1 Observability .. 292
11.2.2 Luenberger Observer .. 293
11.2.3 Case Study: Luenberger Observer for Heading Autopilots using only Compass Measurements 294
11.3 Kalman Filter Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.1 Discrete-Time Kalman Filter</td>
<td>296</td>
</tr>
<tr>
<td>11.3.2 Continuous-Time Kalman Filter</td>
<td>297</td>
</tr>
<tr>
<td>11.3.3 Extended Kalman Filter</td>
<td>298</td>
</tr>
<tr>
<td>11.3.4 Corrector–Predictor Representation for Nonlinear Observers</td>
<td>299</td>
</tr>
<tr>
<td>11.3.5 Case Study: Kalman Filter for Heading Autopilots using only Compass Measurements</td>
<td>300</td>
</tr>
<tr>
<td>11.3.6 Case Study: Kalman Filter for Dynamic Positioning Systems using GNSS and Compass Measurements</td>
<td>304</td>
</tr>
</tbody>
</table>

11.4 Nonlinear Passive Observer Designs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1 Case Study: Passive Observer for Dynamic Positioning using GNSS and Compass Measurements</td>
<td>310</td>
</tr>
<tr>
<td>11.4.2 Case Study: Passive Observer for Heading Autopilots using only Compass Measurements</td>
<td>311</td>
</tr>
<tr>
<td>11.4.3 Case Study: Passive Observer for Heading Autopilots using both Compass and Rate Measurements</td>
<td>319</td>
</tr>
</tbody>
</table>

11.5 Integration Filters for IMU and Global Navigation Satellite Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.1 Integration Filter for Position and Linear Velocity</td>
<td>328</td>
</tr>
<tr>
<td>11.5.2 Accelerometer and Compass Aided Attitude Observer</td>
<td>328</td>
</tr>
<tr>
<td>11.5.3 Attitude Observer using Gravitational and Magnetic Field Directions</td>
<td>327</td>
</tr>
</tbody>
</table>

12 Motion Control Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Open-Loop Stability and Maneuverability</td>
<td>343</td>
</tr>
<tr>
<td>12.1.1 Straight-Line, Directional and Positional Motion Stability</td>
<td>344</td>
</tr>
<tr>
<td>12.1.2 Maneuverability</td>
<td>353</td>
</tr>
<tr>
<td>12.2 PID Control and Acceleration Feedback</td>
<td>365</td>
</tr>
<tr>
<td>12.2.1 Linear Mass–Damper–Spring Systems</td>
<td>365</td>
</tr>
<tr>
<td>12.2.2 Acceleration Feedback</td>
<td>370</td>
</tr>
<tr>
<td>12.2.3 PID Control with Acceleration Feedback</td>
<td>372</td>
</tr>
<tr>
<td>12.2.4 MIMO Nonlinear PID Control with Acceleration Feedback</td>
<td>375</td>
</tr>
<tr>
<td>12.2.5 Case Study: Heading Autopilot for Ships and Underwater Vehicles</td>
<td>377</td>
</tr>
<tr>
<td>12.2.6 Case Study: Heading Autopilot with Acceleration Feedback for Ships and Underwater Vehicles</td>
<td>384</td>
</tr>
<tr>
<td>12.2.7 Case Study: Linear Cross-Tracking System for Ships and Underwater Vehicles</td>
<td>385</td>
</tr>
<tr>
<td>12.2.8 Case Study: LOS Path-Following Control for Ships and Underwater Vehicles</td>
<td>387</td>
</tr>
<tr>
<td>12.2.9 Case Study: Path-Following Control for Ships and Underwater Vehicles using Serret-Frenet Coordinates</td>
<td>389</td>
</tr>
<tr>
<td>12.2.10 Case Study: Dynamic Positioning Control System for Ships and Floating Structures</td>
<td>391</td>
</tr>
<tr>
<td>12.2.11 Case Study: Position Mooring Control System for Ships and Floating Structures</td>
<td>396</td>
</tr>
<tr>
<td>12.3 Control Allocation</td>
<td>398</td>
</tr>
<tr>
<td>12.3.1 Actuator Models</td>
<td>398</td>
</tr>
<tr>
<td>12.3.2 Unconstrained Control Allocation for Nonrotatable Actuators</td>
<td>404</td>
</tr>
<tr>
<td>12.3.3 Constrained Control Allocation for Nonrotatable Actuators</td>
<td>405</td>
</tr>
<tr>
<td>12.3.4 Constrained Control Allocation for Azimuth Thrusters</td>
<td>408</td>
</tr>
<tr>
<td>12.3.5 Case Study: DP Control Allocation System</td>
<td>411</td>
</tr>
</tbody>
</table>
Contents

13 Advanced Motion Control Systems

13.1 Linear Quadratic Optimal Control

13.1.1 Linear Quadratic Regulator

13.1.2 LQR Design for Trajectory Tracking and Integral Action

13.1.3 General Solution of the LQ Trajectory-Tracking Problem

13.1.4 Case Study: Optimal Heading Autopilot for Ships and Underwater Vehicles

13.1.5 Case Study: Optimal Fin and Rudder-Roll Damping Systems for Ships

13.1.6 Case Study: Optimal Dynamic Positioning System for Ships and Floating Structures

13.2 State Feedback Linearization

13.2.1 Decoupling in the BODY Frame (Velocity Control)

13.2.2 Decoupling in the NED Frame (Position and Attitude Control)

13.2.3 Case Study: Feedback Linearizing Speed Controller for Ships and Underwater Vehicles

13.2.4 Case Study: Feedback Linearizing Ship and Underwater Vehicle Autopilot

13.2.5 Case Study: MIMO Adaptive Feedback Linearizing Controller for Ships and Underwater Vehicles

13.3 Integrator Backstepping

13.3.1 A Brief History of Backstepping

13.3.2 The Main Idea of Integrator Backstepping

13.3.3 Backstepping of SISO Mass–Damper–Spring Systems

13.3.4 Integral Action by Constant Parameter Adaptation

13.3.5 Integrator Augmentation Technique

13.3.6 Case Study: Backstepping of MIMO Mass–Damper–Spring Systems

13.3.7 Case Study: MIMO Backstepping for Fully Actuated Ships

13.3.8 Case Study: MIMO Backstepping Design with Acceleration Feedback for Fully Actuated Ships

13.3.9 Case Study: Nonlinear Separation Principle for PD Controller–Observer Design

13.3.10 Case Study: Weather Optimal Position Control for Ships and Floating Structures

13.3.11 Case Study: Heading Autopilot for Ships and Underwater Vehicles

13.3.12 Case Study: Path-Following Controller for Underactuated Marine Craft

13.4 Sliding-Mode Control

13.4.1 SISO Sliding-Mode Control

13.4.2 Sliding-Mode Control using the Eigenvalue Decomposition

13.4.3 Case Study: Heading Autopilot for Ships and Underwater Vehicles

13.4.4 Case Study: Pitch and Depth Autopilot for Underwater Vehicles

Appendices

A Nonlinear Stability Theory

A.1 Lyapunov Stability for Autonomous Systems

A.1.1 Stability and Convergence

A.1.2 Lyapunov's Direct Method

A.1.3 Krasovskii–LaSalle’s Theorem

A.1.4 Global Exponential Stability
A.2 Lyapunov Stability of Nonautonomous Systems
- **A.2.1 Barbálat’s Lemma**
- **A.2.2 LaSalle–Yoshizawa’s Theorem**
- **A.2.3 Matrosov’s Theorem**
- **A.2.4 UGAS when Backstepping with Integral Action**

B Numerical Methods
- **B.1 Discretization of Continuous-Time Systems**
 - **B.1.1 Linear State-Space Models**
 - **B.1.2 Nonlinear State-Space Models**
- **B.2 Numerical Integration Methods**
 - **B.2.1 Euler’s Method**
 - **B.2.2 Adams–Bashford’s Second-Order Method**
 - **B.2.3 Runge–Kutta Second-Order Method**
 - **B.2.4 Runge–Kutta Fourth-Order Method**
- **B.3 Numerical Differentiation**

References

Index