BUILDING PARALLEL, EMBEDDED, AND REAL-TIME APPLICATIONS WITH ADA

JOHN W. MCCORMICK
University of Northern Iowa

FRANK SINGHOFF
Université de Bretagne Occidentale

JÉRÔME HUGUES
Institute for Space and Aeronautics Engineering (ISAE), Toulouse

CAMBRIDGE UNIVERSITY PRESS
Contents

List of illustrations page viii
List of tables x
Foreword xi
Preface xiii

1 Introduction and overview 1
1.1 Parallel programming 2
1.2 Distributed programming 11
1.3 Real-time systems 12
Summary 19
Exercises 20

2 Sequential programming with Ada 23
2.1 Control structures 26
2.2 Subprograms 30
2.3 The Ada type model 35
2.4 Blocks and exceptions 62
2.5 Programming in the large 65
2.6 Object-oriented programming 76
2.7 Low-level programming 82
Summary 102
Exercises 103

3 Task basics 107
3.1 Defining tasks 107
3.2 The task life cycle 109
3.3 Task hierarchies 113
3.4 Exceptions 117
3.5 The implementation of Ada tasking 119
3.6 Other task features 119
Contents

Summary 121
Exercises 122

4 Communication and synchronization based on shared objects 126
4.1 Mutual exclusion 126
4.2 The protected object 130
4.3 Synchronization 134
4.4 The protected entry 135
4.5 Restrictions 140
4.6 Entry queues 141
4.7 Some useful concurrent patterns 143
4.8 Requeue and private operations 149
4.9 Pragmas Atomic and Volatile 153
4.10 Interrupts 155
Summary 161
Exercises 162

5 Communication and synchronization based on direct interaction 166
5.1 The rendezvous 166
5.2 The selective accept statement 171
5.3 Entry call options 180
5.4 State machines 181
Summary 191
Exercises 192

6 Distributed systems with Ada 195
6.1 What are distributed systems? 195
6.2 Middleware, architectures, and concepts 200
6.3 DSA, the Distributed Systems Annex 202
6.4 POLYORB: compilation chain and run-time for the DSA 212
6.5 Advanced DSA concepts 215
6.6 CORBA, the Common Object Request Broker Architecture 221
6.7 Advanced CORBA concepts 236
6.8 CORBA versus the DSA 247
Summary 248
Exercises 250

7 Real-time systems and scheduling concepts 251
7.1 Task characteristics 253
7.2 Real-time schedulers 257
1 Contents

7.3 Dependent tasks 278
Summary 285
Exercises 286

8 Real-time programming with Ada 294
8.1 Expressing time 295
8.2 Implementing periodic tasks 298
8.3 Ada implementation of the car application 303
8.4 Handling shared resources 305
8.5 The Ada scheduling model 308
8.6 Ravenscar 312
8.7 POSIX 1003.1b and its Ada binding 314
8.8 POSIX implementation of the car application 324
8.9 Ada tasks versus POSIX processes 328
Summary 329
Exercises 330

9 Tools for building and verifying real-time applications 333
9.1 Ada run-times to implement real-time applications 334
9.2 Some variants of the GNAT run-time 339
9.3 Validating scheduling of a system 347
Summary 355
Exercises 356

References 359
Index 365