ESD
Design and Synthesis

Steven H. Voldman
IEEE Fellow, Vermont, USA
Contents

About the Author xv
Preface xvii
Acknowledgments xix

1 ESD Design Synthesis 1

1.1 ESD Design Synthesis and Architecture Flow 1
 1.1.1 Top-Down ESD Design 2
 1.1.2 Bottom-Up ESD Design 2
 1.1.3 Top-Down ESD Design – Memory Semiconductor Chips 3
 1.1.4 Top-Down ESD Design – ASIC Design System 3

1.2 ESD Design – The Signal Path and the Alternate Current Path 4

1.3 ESD Electrical Circuit and Schematic Architecture Concepts 6
 1.3.1 The Ideal ESD Network and the Current–Voltage DC Design Window 6
 1.3.2 The ESD Design Window 7
 1.3.3 The Ideal ESD Networks in the Frequency Domain Design Window 9

1.4 Mapping Semiconductor Chips and ESD Designs 11
 1.4.1 Mapping Across Semiconductor Fabricators 11
 1.4.2 ESD Design Mapping Across Technology Generations 13
 1.4.3 Mapping from Bipolar Technology to CMOS Technology 14
 1.4.4 Mapping from Digital CMOS Technology to Mixed Signal Analog–Digital CMOS Technology 15
 1.4.5 Mapping from Bulk CMOS Technology to Silicon on Insulator (SOI) 15
 1.4.6 ESD Design – Mapping CMOS to RF CMOS Technology 16

1.5 ESD Chip Architecture and ESD Test Standards 17
 1.5.1 ESD Chip Architecture and ESD Testing 17

1.6 ESD Testing 17
 1.6.1 ESD Qualification Testing 18
 1.6.2 ESD Test Models 18
 1.6.3 ESD Characterization Testing 19
 1.6.4 TLP Testing 19

1.7 ESD Chip Architecture and ESD Alternative Current Paths 21
 1.7.1 ESD Circuits, I/O, and Cores 21
 1.7.2 ESD Signal Pin Circuits 21
1.7.3 ESD Power Clamp Networks 23
1.7.4 ESD Rail-to-Rail Circuits 24
1.7.5 ESD Design and Noise 25
1.7.6 Internal Signal Path ESD Networks 27
1.7.7 Cross-Domain ESD Networks 28

1.8 ESD Networks, Sequencing, and Chip Architecture 28
1.9 ESD Design Synthesis – Latchup-Free ESD Networks 29
1.10 ESD Design Concepts – Buffering – Inter-Device 31
1.11 ESD Design Concepts – Ballasting – Inter-Device 32
1.12 ESD Design Concepts – Ballasting – Intra-Device 34
1.13 ESD Design Concepts – Distributed Load Techniques 34
1.14 ESD Design Concepts – Dummy Circuits 35
1.15 ESD Design Concepts – Power Supply De-Coupling 36
1.16 ESD Design Concepts – Feedback Loop De-Coupling 36
1.17 ESD Design Concepts – Latchup-Free ESD Networks 37
1.17.1 Design Symmetry 37
1.17.2 Design Segmentation 38
1.17.3 ESD Design Concepts – Utilization of Empty Space 39
1.17.4 ESD Design Synthesis – Across Chip Line Width Variation (ACLV) 40
1.17.5 ESD Design Concepts – Dummy Shapes 42
1.17.6 ESD Design Concepts – Dummy Masks 42
1.17.7 ESD Design Concepts – Adjacency 43

1.18 ESD Design Concepts – Analog Circuit Techniques 43
1.19 ESD Design Concepts – Wire Bonds 44

1.20 Design Rules 45
1.20.1 ESD Design Rule Checking (DRC) 45
1.20.2 ESD Layout vs. Schematic (LVS) 45
1.20.3 Electrical Resistance Checking (ERC) 46

1.21 Summary and Closing Comments 46

Problems 46
References 47

2 ESD Architecture and Floorplanning 53
2.1 ESD Design Floorplan 53
2.2 Peripheral I/O Design 54
2.2.1 Pad-Limited Peripheral I/O Design Architecture 55
2.2.2 Pad-Limited Peripheral I/O Design Architecture – Staggered I/O 56
2.2.3 Core-Limited Peripheral I/O Design Architecture 57

2.3 Lumped ESD Power Clamp in Peripheral I/O Design Architecture 58
2.3.1 Lumped ESD Power Clamp in Peripheral I/O Design Architecture in the Semiconductor Chip Corners 58
2.3.2 Lumped ESD Power Clamp in Peripheral I/O Design Architecture – Power Pads 59

2.4 Lumped ESD Power Clamp in Peripheral I/O Design Architecture – Master/Slave ESD Power Clamp System 60

2.5 Array I/O 61
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>Array I/O – Off-Chip Driver Banks</td>
<td>62</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Array I/O Nibble Architecture</td>
<td>64</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Array I/O Pair Architecture</td>
<td>65</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Array I/O – Fully Distributed</td>
<td>65</td>
</tr>
<tr>
<td>2.6</td>
<td>ESD Architecture – Dummy Bus Architectures</td>
<td>69</td>
</tr>
<tr>
<td>2.6.1</td>
<td>ESD Architecture – Dummy V_{DD} Bus</td>
<td>69</td>
</tr>
<tr>
<td>2.6.2</td>
<td>ESD Architecture – Dummy Ground (V_{SS}) Bus</td>
<td>70</td>
</tr>
<tr>
<td>2.7</td>
<td>Native Voltage Power Supply Architecture</td>
<td>71</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Single Power Supply Architecture</td>
<td>71</td>
</tr>
<tr>
<td>2.8</td>
<td>Mixed-Voltage Architecture</td>
<td>72</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Mixed-Voltage Architecture – Single Power Supply</td>
<td>72</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Mixed-Voltage Architecture – Dual Power Supply</td>
<td>73</td>
</tr>
<tr>
<td>2.9</td>
<td>Mixed-Signal Architecture</td>
<td>76</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Mixed-Signal Architecture – Bipolar</td>
<td>76</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Mixed-Signal Architecture – CMOS</td>
<td>77</td>
</tr>
<tr>
<td>2.10</td>
<td>Mixed-System Architecture – Digital and Analog CMOS</td>
<td>78</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Digital and Analog CMOS Architecture</td>
<td>78</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Digital and Analog Floorplan – Placement of Analog Circuits</td>
<td>80</td>
</tr>
<tr>
<td>2.11</td>
<td>Mixed-Signal Architecture – Digital, Analog, and RF Architecture</td>
<td>81</td>
</tr>
<tr>
<td>2.12</td>
<td>Summary and Closing Comments</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>84</td>
</tr>
</tbody>
</table>

3 ESD Power Grid Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>ESD Power Grid</td>
<td>87</td>
</tr>
<tr>
<td>3.1.1</td>
<td>ESD Power Grid – Key ESD Design Parameters</td>
<td>87</td>
</tr>
<tr>
<td>3.1.2</td>
<td>ESD and the Alternative Current Path – The Role of ESD Power Grid Resistance</td>
<td>88</td>
</tr>
<tr>
<td>3.2</td>
<td>Semiconductor Chip Impedance</td>
<td>91</td>
</tr>
<tr>
<td>3.3</td>
<td>Interconnect Failure and Dynamic On-Resistance</td>
<td>92</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Interconnect Dynamic On-Resistance</td>
<td>92</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Ti/Al/Ti Interconnect Failure</td>
<td>93</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Copper Interconnect Failure</td>
<td>95</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Melting Temperature of Interconnect Materials</td>
<td>96</td>
</tr>
<tr>
<td>3.4</td>
<td>Interconnect Wire and Via Guidelines</td>
<td>97</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Interconnect Wire and Via Guidelines for HBM ESD Events</td>
<td>97</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Interconnect Wire and Via Guidelines for MM ESD Events</td>
<td>98</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Interconnect Wire and Via Guidelines for CDM ESD Events</td>
<td>98</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Interconnect Wire and Via Guidelines for HMM and IEC 61000-4-2 ESD Events</td>
<td>99</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Wire and Via ESD Metrics</td>
<td>99</td>
</tr>
<tr>
<td>3.5</td>
<td>ESD Power Grid Resistance</td>
<td>100</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Power Grid Design – ESD Input to Power Grid Resistance</td>
<td>100</td>
</tr>
<tr>
<td>3.5.2</td>
<td>ESD Input to Power Grid Connections – Across ESD Bus Resistance</td>
<td>101</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Power Grid Design – ESD Power Clamp to Power Grid Resistance Evaluation</td>
<td>103</td>
</tr>
</tbody>
</table>
3.5.4 Power Grid Design – Resistance Evaluation 104
3.5.5 Power Grid Design Distribution Representation 106
3.6 Power Grid Layout Design 108
3.6.1 Power Grid Design – Slotting of Power Grid 108
3.6.2 Power Grid Design – Segmentation of Power Grids 109
3.6.3 Power Grid Design – Chip Corners 110
3.6.4 Power Grid Design – Stacking of Metal Levels 111
3.6.5 Power Grid Design – Wiring Bays and Weaved Power Bus Designs 112
3.7 ESD Specification Power Grid Considerations 112
3.7.1 CDM Specification Power Grid and Interconnect Design Considerations 112
3.7.2 HMM and IEC Specification Power Grid and Interconnect Design Considerations 112
3.8 Power Grid Design Synthesis – ESD Design Rule Checking Methods 113
3.8.1 Power Grid Design Synthesis – ESD DRC Methods Using an ESD Virtual Design Level 113
3.8.2 Power Grid Design Synthesis – ESD DRC Methods Using an ESD Interconnect Parameterized Cell 115
3.9 Summary and Closing Comments 118
Problems 119
References 120

4 ESD Power Clamps 123
4.1 ESD Power Clamps 123
4.1.1 Classification of ESD Power Clamps 123
4.1.2 Design Synthesis of ESD Power Clamp – Key Design Parameters 125
4.2 Design Synthesis of ESD Power Clamps 125
4.2.1 Transient Response Frequency Trigger Element and the ESD Frequency Window 126
4.2.2 The ESD Power Clamp Frequency Design Window 126
4.2.3 Design Synthesis of ESD Power Clamp – Voltage Triggered ESD Trigger Elements 127
4.3 Design Synthesis of ESD Power Clamp – The ESD Power Clamp Shunting Element 128
4.3.1 ESD Power Clamp Trigger Condition vs. Shunt Failure 129
4.3.2 ESD Clamp Element – Width Scaling 130
4.3.3 ESD Clamp Element – On-Resistance 130
4.3.4 ESD Clamp Element – Safe Operating Area 131
4.4 ESD Power Clamp Issues 131
4.4.1 ESD Power Clamp Issues – Power-Up and Power-Down 131
4.4.2 ESD Power Clamp Issues – False Triggering 131
4.4.3 ESD Power Clamp Issues – Pre-Charging 132
4.4.4 ESD Power Clamp Issues – Post-Charging 132
4.5 ESD Power Clamp Design 132
4.5.1 Native Power Supply RC-Triggered MOSFET ESD Power Clamp 132
CONTENTS xi

4.5.2 Non-Native Power Supply RC-Triggered MOSFET ESD Power Clamp 133
4.5.3 ESD Power Clamp Networks with Improved Inverter Stage Feedback 134
4.5.4 ESD Power Clamp Design Synthesis – Forward Bias Triggered ESD Power Clamps 136
4.5.5 ESD Power Clamp Design Synthesis – IEC 61000-4-2 Responsive ESD Power Clamps 136
4.5.6 ESD Power Clamp Design Synthesis – Pre-Charging and Post-Charging Insensitive ESD Power Clamps 137
4.6 ESD Power Clamp Design Synthesis – Bipolar ESD Power Clamps 137
4.6.1 Bipolar ESD Power Clamps with Zener Breakdown Trigger Element 138
4.6.2 Bipolar ESD Power Clamps with Bipolar Transistor BV_{CEO} Breakdown Trigger Element 138
4.6.3 Bipolar ESD Power Clamps with BV_{CEO} Bipolar Transistor Trigger and Variable Trigger Diode String Network 140
4.6.4 Bipolar ESD Power Clamps with Frequency Trigger Elements 141
4.7 Master/Slave ESD Power Clamp Systems 141
4.8 Summary and Closing Comments 143
Problems 143
References 144

5 ESD Signal Pin Networks Design and Synthesis 149
5.1 ESD Signal Pin Structures 149
5.1.1 Classification of ESD Signal Pin Networks 150
5.1.2 ESD Design Synthesis of ESD Signal Devices – Key Design Parameters 151
5.2 ESD Input Structures – ESD and Bond Pads Layout 152
5.2.1 ESD and Bond Pad Layout and Synthesis 152
5.2.2 ESD Structures Between Bond Pads 153
5.2.3 Split I/O and Bond Pad 154
5.2.4 Split ESD Adjacent to Bond Pad 155
5.2.5 ESD Structures Partially Under Bond Pads 157
5.2.6 ESD Structures Under and Between the Bond Pads 158
5.2.7 ESD Circuits and RF Bond Pad Integration 158
5.2.8 RF ESD Signal Pad Structures Under Bond Pads 161
5.3 ESD Design Synthesis and Layout of MOSFETs 163
5.3.1 MOSFET Key Design Parameters 163
5.3.2 Single MOSFET with Silicide Block Masks 166
5.3.3 Series Cascode MOSFET 167
5.3.4 Triple-well MOSFETs 168
5.4 ESD Design Synthesis and Layout of Diodes 169
5.4.1 ESD Diode Key Design Parameters 169
5.4.2 ESD Design Synthesis of Dual-Diode Networks 170
5.4.3 ESD Design Synthesis of Diode String Networks 172
5.4.4 ESD Design Synthesis of Back-to-Back Diode String 173
5.4.5 ESD Design Synthesis for Differential Pair 174
5.5 ESD Design Synthesis of SCRs 175
5.5.1 ESD Design Synthesis of Uni-directional SCRs 177
5.5.2 ESD Design Synthesis of Bi-directional SCRs 178
5.5.3 ESD Design Synthesis of SCRs – External Trigger Element 180
5.6 ESD Design Synthesis and Layout of Resistors 180
5.6.1 Polysilicon Resistor Design Layout 180
5.6.2 Diffusion Resistor Design Layout 181
5.6.3 P-diffusion Resistor Design Layout 181
5.6.4 N-diffusion Resistor Design 183
5.6.5 Buried Resistors 184
5.6.6 N-well Resistors 185
5.7 ESD Design Synthesis of Inductors 187
5.8 Summary and Closing Comments 188
Problems 188
References 190

6 Guard Ring Design and Synthesis 193
6.1 Guard Ring Design and Integration 193
6.2 Guard Ring Characterization 194
 6.2.1 Guard Ring Efficiency 194
 6.2.2 Guard Ring Theory – A Generalized Bipolar Transistor Perspective 196
 6.2.3 Guard Ring Theory – A Probability of Escape Perspective 196
 6.2.4 Guard Ring – The Injection Ratio 197
6.3 Semiconductor Chip Guard Ring Seal 198
6.4 I/O to Core Guard Rings 199
6.5 I/O to I/O Guard Rings 200
6.6 Within I/O Guard Rings 201
 6.6.1 Within I/O Cell Guard Ring 201
 6.6.2 ESD-to-I/O OCD Guard Ring 201
6.7 ESD Signal Pin Guard Rings 202
 6.7.1 ESD Signal Pin Guard Rings and Dual-Diode ESD Network 204
6.8 Library Element Guard Rings 205
 6.8.1 N-channel MOSFET Guard Rings 205
 6.8.2 P-channel MOSFET Guard Rings 208
 6.8.3 RF Guard Rings 210
6.9 Mixed-Signal Guard Rings – Digital to Analog 210
6.10 Mixed-Voltage Guard Rings – High Voltage to Low Voltage 211
 6.10.1 Guard Rings – High Voltage 212
6.11 Passive and Active Guard Rings 213
 6.11.1 Passive Guard Rings 213
 6.11.2 Active Guard Rings 214
6.12 Trench Guard Rings 215
6.13 TSV Guard Rings 216
6.14 Guard Ring DRC 218