Contents

Series Editor’s Foreword xiii
Foreword by Dr Craig Hillman xv
Series Editor’s Preface xvii
Preface xix
About the Authors xxi

1 Introduction 1
1.1 The Three Goals of the Book 1
1.2 Historical Perspective 3
 1.2.1 Reliability Prehistory 3
 1.2.2 The Birth of Reliability as a Discipline 4
 1.2.3 Historical Development of Reliability 4
 1.2.4 Tools for Failure Analysis 7
1.3 Terminology 7
1.4 State of the Art and Future Trends 8
 1.4.1 Techniques of Failure Analysis 9
 1.4.2 Failure Mechanisms 11
 1.4.3 Models for the Physics-of-Failure 12
 1.4.4 Future Trends 13
1.5 General Plan of the Book 14
References 15

2 Failure Analysis – Why? 17
2.1 Eight Possible Applications 17
2.2 Forensic Engineering 18
 2.2.1 FA at System Level 19
 2.2.2 FA at Component Level 22
2.3 Reliability Modelling 22
 2.3.1 Economic Benefits of Using Reliability Models 25
 2.3.2 Reliability of Humans 25
2.4 Reverse Engineering 26
2.5 Controlling Critical Input Variables 26
2.6 Design for Reliability 27
4.3.8 Acoustic Techniques 100
4.3.9 Laser Techniques 102
4.3.10 Holographic Interferometry 105
4.3.11 Emission Microscopy 105
4.3.12 Atom Probe 106
4.3.13 Neutron Radiography 106
4.3.14 Electromagnetic Field Measurements 107
4.3.15 Other Techniques 107

References 107

5 Failure Analysis – What? 109
5.1 Failure Modes and Mechanisms at Various Process Steps 110
5.1.1 Wafer Level 110
5.1.2 Packaging 138
5.1.3 Operation 151
5.2 Failure Modes and Mechanisms of Passive Electronic Parts 152
5.2.1 Resistors 153
5.2.2 Capacitors 158
5.2.3 Varistors 168
5.2.4 Connectors 170
5.2.5 Inductive Elements 175
5.2.6 Embedded Passive Components 176
5.3 Failure Modes and Mechanisms of Silicon Bi Technology 177
5.3.1 Silicon Diodes 178
5.3.2 Bipolar Transistors 182
5.3.3 Thyristors and Insulated-Gate Bipolar Transistors 184
5.3.4 Bipolar Integrated Circuits 186
5.4 Failure Modes and Mechanisms of MOS Technology 187
5.4.1 Junction Field-Effect Transistors 187
5.4.2 MOS Transistors 188
5.4.3 MOS Integrated Circuits 192
5.4.4 Memories 198
5.4.5 Microprocessors 199
5.4.6 Silicon-on-Insulator Technology 200
5.5 Failure Modes and Mechanisms of Optoelectronic and Photonic Technologies 201
5.5.1 Light-Emitting Diodes 201
5.5.2 Photodiodes 204
5.5.3 Phototransistors 205
5.5.4 Optocouplers 205
5.5.5 Photonic Displays 206
5.5.6 Solar Cells 208
5.6 Failure Modes and Mechanisms of Non-Silicon Technologies 209
5.6.1 Diodes 210
5.6.2 Transistors 215
5.6.3 Integrated Circuits 218
5.7 Failure Modes and Mechanisms of Hybrid Technology 218
5.7.1 Thin-Film Hybrid Circuits 219
5.7.2 Thick-Film Hybrid Circuits 221
5.8 Failure Modes and Mechanisms of Microsystem Technologies 221
5.8.1 Microsystems 222
6 Case Studies

6.1 Case Study No. 1: Capacitors
6.1.1 Subject
6.1.2 Goal
6.1.3 Input Data
6.1.4 Sample Preparation
6.1.5 Working Procedure and Results
6.1.6 Output Data

6.2 Case Study No. 2: Bipolar Power Devices
6.2.1 Subject
6.2.2 Goal
6.2.3 Input Data
6.2.4 Working Procedure for FA and Results
6.2.5 Output Data

6.3 Case Study No. 3: CMOS Devices
6.3.1 Subject
6.3.2 Goal
6.3.3 Input Data
6.3.4 Working Procedure for FA and Results
6.3.5 Output Data

6.4 Case Study No. 4: MOS Field-Effect Transistors
6.4.1 Subject
6.4.2 Goal
6.4.3 Input Data
6.4.4 Sample Preparation
6.4.5 Working Procedure for FA
6.4.6 Results
6.4.7 Output Data

6.5 Case Study No. 5: Thin-Film Transistors
6.5.1 Subject
6.5.2 Goal
6.5.3 Input Data
6.5.4 Sample Preparation
6.5.5 Working Procedure for FA and Results
6.5.6 Output Data

6.6 Case Study No. 6: Heterojunction Field-Effect Transistors
6.6.1 Subject
6.6.2 Goals
6.6.3 Input Data
6.6.4 Sample Preparation
6.6.5 Working Procedure and Results
6.6.6 Output Data

6.7 Case Study No. 7: MEMS Resonators
6.7.1 Subject
6.7.2 Goal
6.7.3 Input Data
6.7.4 Sample Preparation