SPOKEN LANGUAGE UNDERSTANDING
SYSTEMS FOR EXTRACTING SEMANTIC INFORMATION FROM SPEECH

Gokhan Tur
Microsoft Speech Labs, Microsoft Research, USA

Renato De Mori
McGill University, Montreal, Canada and University of Avignon, France
Contents

List of Contributors xvii
Foreword xxv
Preface xxix

1 Introduction 1
Gokhan Tur and Renato De Mori
1.1 A Brief History of Spoken Language Understanding 1
1.2 Organization of the Book 4

PART 1 SPOKEN LANGUAGE UNDERSTANDING FOR HUMAN/MACHINE INTERACTIONS

2 History of Knowledge and Processes for Spoken Language Understanding 11
Renato De Mori
2.1 Introduction 11
2.2 Meaning Representation and Sentence Interpretation 12
2.2.1 Meaning Representation Languages 12
2.2.2 Meaning Extraction from Sentences 16
2.3 Knowledge Fragments and Semantic Composition 18
2.3.1 Concept Tags and Knowledge Fragments 19
2.3.2 Composition by Fusion of Fragments 21
2.3.3 Composition by Attachment 23
2.3.4 Composition by Attachment and Inference 24
2.4 Probabilistic Interpretation in SLU Systems 25
2.5 Interpretation with Partial Syntactic Analysis 26
2.6 Classification Models for Interpretation 28
2.7 Advanced Methods and Resources for Semantic Modeling and Interpretation 30
2.8 Recent Systems 32
2.9 Conclusions 35
References 36

References 7
3 Semantic Frame-based Spoken Language Understanding 41

Ye-Yi Wang, Li Deng and Alex Acero

3.1 Background 41

3.1.1 History of the Frame-based SLU 41

3.1.2 Semantic Representation and Semantic Frame 43

3.1.3 Technical Challenges 45

3.1.4 Standard Data Sets 47

3.1.5 Evaluation Metrics 47

3.2 Knowledge-based Solutions 49

3.2.1 Semantically Enhanced Syntactic Grammars 49

3.2.2 Semantic Grammars 51

3.2.3 Knowledge-based Solutions in Commercial Applications 52

3.3 Data-driven Approaches 54

3.3.1 Generative Models 55

3.3.2 Integrating Knowledge in Statistical Models – A Case Study of the Generative HMM/CFG Composite Model 65

3.3.3 Use of Generative Understanding Models in Speech Recognition 71

3.3.4 Conditional Models 74

3.3.5 Other Data-driven Approaches to SLU 84

3.3.6 Frame-based SLU in Context 86

3.4 Summary 87

References 88

4 Intent Determination and Spoken Utterance Classification 93

Gokhan Tur and Li Deng

4.1 Background 93

4.2 Task Description 96

4.3 Technical Challenges 97

4.4 Benchmark Data Sets 98

4.5 Evaluation Metrics 98

4.5.1 Direct Metrics 98

4.5.2 Indirect Metrics 99

4.6 Technical Approaches 99

4.6.1 Semantic Representations 100

4.6.2 The HMIHY Way: Using Salient Phrases 101

4.6.3 Vector-state Model 103

4.6.4 Using Discriminative Classifiers 103

4.6.5 Using Prior Knowledge 105

4.6.6 Beyond ASR 1-Best: Using Word Confusion Networks 106

4.6.7 Conditional Understanding Models Used for Discriminative Training of Language Models 108

4.6.8 Phone-based Call Classification 115

4.7 Discussion and Conclusions 115

References 117
5 Voice Search
Ye-Yi Wang, Dong Yu, Yun-Cheng Ju and Alex Acero
5.1 Background
 5.1.1 Voice Search Compared with the Other Spoken Dialogue Technologies
 5.1.2 History of Voice Search
 5.1.3 Technical Challenges
 5.1.4 Data Sets
 5.1.5 Evaluation Metrics
5.2 Technology Review
 5.2.1 Speech Recognition
 5.2.2 Spoken Language Understanding/Search
 5.2.3 Dialogue Management
 5.2.4 Closing the Feedback Loop
5.3 Summary
References

6 Spoken Question Answering
Sophie Rosset, Olivier Galibert and Lori Lamel
6.1 Introduction
6.2 Specific Aspects of Handling Speech in QA Systems
6.3 QA Evaluation Campaigns
 6.3.1 General Presentation
 6.3.2 Question Answering on Speech Transcripts: Evaluation Campaigns
6.4 Question-answering Systems
 6.4.1 General Overview
 6.4.2 Approaches Used in the QAst Campaigns
 6.4.3 QAst Campaign Results
6.5 Projects Integrating Spoken Requests and Question Answering
6.6 Conclusions
References

7 SLU in Commercial and Research Spoken Dialogue Systems
David Suendermann and Roberto Pieraccini
7.1 Why Spoken Dialogue Systems do not have to Understand
7.2 Approaches to SLU for Dialogue Systems
 7.2.1 Rule-based Semantic Grammars
 7.2.2 Statistical SLU
 7.2.3 Dealing with Deficiencies of Speech Recognition and SLU in Dialogue Systems
 7.2.4 Robust Interaction Design and Multiple Levels of Confidence Thresholds
 7.2.5 N-best Lists
 7.2.6 One-step Correction and Mixed Initiative
 7.2.7 Belief Systems
7.3 From Call Flow to POMDP: How Dialogue Management Integrates with SLU
 7.3.1 Rule-based Approaches: Call Flow, Form-filling, Agenda, Call-routing, Inference
 7.3.2 Statistical Dialogue Management: Reinforcement Learning, MDP, POMDP
7.4 Benchmark Projects and Data Sets
 7.4.1 ATIS
 7.4.2 Communicator
 7.4.3 Let's Go!
 7.4.4 Datasets in Commercial Dialogue Systems
7.5 Time is Money: The Relationship between SLU and Overall Dialogue System Performance
 7.5.1 Automation Rate
 7.5.2 Average Handling Time
 7.5.3 Retry Rate and Speech Errors
7.6 Conclusion
References

8 Active Learning
Dilek Hakkani-Tür and Giuseppe Riccardi
8.1 Introduction
8.2 Motivation
 8.2.1 Language Variability
 8.2.2 The Domain Concept Variability
 8.2.3 Noisy Annotation
 8.2.4 The Data Overflow
8.3 Learning Architectures
 8.3.1 Passive Learning
 8.3.2 Active Learning
8.4 Active Learning Methods
 8.4.1 The Statistical Framework
 8.4.2 Certainty-based Active Learning Methods
 8.4.3 Committee-based Active Learning
 8.4.4 Density-based Active Learning
 8.4.5 Stopping Criteria for Active Learning
8.5 Combining Active Learning with Semi-supervised Learning
8.6 Applications
 8.6.1 Automatic Speech Recognition
 8.6.2 Intent Determination
 8.6.3 Concept Segmentation/Labeling
 8.6.4 Dialogue Act Tagging
8.7 Evaluation of Active Learning Methods
8.8 Discussion and Conclusions
References
PART 2 SPOKEN LANGUAGE UNDERSTANDING FOR HUMAN/HUMAN CONVERSATIONS

9 Human/Human Conversation Understanding 227
Gokhan Tur and Dilek Hakkani-Tür
 9.1 Background 227
 9.2 Human/Human Conversation Understanding Tasks 229
 9.3 Dialogue Act Segmentation and Tagging 231
 9.3.1 Annotation Schema 232
 9.3.2 Modeling Dialogue Act Tagging 236
 9.3.3 Dialogue Act Segmentation 237
 9.3.4 Joint Modeling of Dialogue Act Segmentation and Tagging 239
 9.4 Action Item and Decision Detection 240
 9.5 Addressee Detection and Co-reference Resolution 242
 9.6 Hot Spot Detection 244
 9.7 Subjectivity, Sentiment, and Opinion Detection 244
 9.8 Speaker Role Detection 245
 9.9 Modeling Dominance 247
 9.10 Argument Diagramming 247
 9.11 Discussion and Conclusions 250
 References 251

10 Named Entity Recognition 257
Frédéric Béchet
 10.1 Task Description 258
 10.1.1 What is a Named Entity? 258
 10.1.2 What are the Main Issues in the NER Task? 260
 10.1.3 Applicative Frameworks of NER in Speech 261
 10.2 Challenges Using Speech Input 263
 10.3 Benchmark Data Sets, Applications 265
 10.3.1 NER as an IE Task 265
 10.3.2 NER as an SLU Task in a Spoken Dialogue Context 266
 10.4 Evaluation Metrics 266
 10.4.1 Aligning the Reference and Hypothesis NE Annotations 267
 10.4.2 Scoring 267
 10.5 Main Approaches for Extracting NEs from Text 269
 10.5.1 Rules and Grammars 269
 10.5.2 NER as a Word Tagging Problem 270
 10.5.3 Hidden Markov Model 271
 10.5.4 Maximum Entropy 273
 10.5.5 Conditional Random Field 274
 10.5.6 Sample Classification Methods 275
 10.5.7 Conclusions on the Methods for NER from Text 276
 10.6 Comparative Methods for NER from Speech 277
 10.6.1 Adapting NER Systems to ASR Output 277
 10.6.2 Integrating ASR and NER Processes 281
10.7 New Trends in NER from Speech
 10.7.1 Adapting the ASR Lexicon 284
 10.7.2 Collecting Data on the ASR Lexicon 285
 10.7.3 Toward an Open-vocabulary ASR System for NER from Speech 286
10.8 Conclusions 287

References 287

11 Topic Segmentation
Matthew Purver

11.1 Task Description 291
 11.1.1 Introduction 291
 11.1.2 What is a Topic? 292
 11.1.3 Linear versus Hierarchical Segmentation 292
11.2 Basic Approaches, and the Challenge of Speech 293
 11.2.1 Changes in Content 293
 11.2.2 Distinctive Boundary Features 294
 11.2.3 Monologue 294
 11.2.4 Dialogue 295
11.3 Applications and Benchmark Datasets 295
 11.3.1 Monologue 296
 11.3.2 Dialogue 296
11.4 Evaluation Metrics 297
 11.4.1 Classification-based 297
 11.4.2 Segmentation-based 298
 11.4.3 Content-based 302
11.5 Technical Approaches 302
 11.5.1 Changes in Lexical Similarity 302
 11.5.2 Similarity-based Clustering 305
 11.5.3 Generative Models 306
 11.5.4 Discriminative Boundary Detection 310
 11.5.5 Combined Approaches, and the State of the Art 310
11.6 New Trends and Future Directions 313
 11.6.1 Multi-modality 313
 11.6.2 Topic Identification and Adaptation 313

References 314

12 Topic Identification
Timothy J. Hazen

12.1 Task Description 319
 12.1.1 What is Topic Identification? 319
 12.1.2 What are Topics? 320
 12.1.3 How is Topic Relevancy Defined? 321
 12.1.4 Characterizing the Constraints on Topic ID Tasks 321
 12.1.5 Text-based Topic Identification 323
12.2 Challenges Using Speech Input 323
 12.2.1 The Naive Approach to Speech-based Topic ID 323
 12.2.2 Challenges of Extemporaneous Speech 323
 12.2.3 Challenges of Imperfect Speech Recognition 324
 12.2.4 Challenges of Unconstrained Domains 325
12.3 Applications and Benchmark Tasks 326
 12.3.1 The TDT Project 326
 12.3.2 The Switchboard and Fisher Corpora 327
 12.3.3 Customer Service/Call Routing Applications 327
12.4 Evaluation Metrics 328
 12.4.1 Topic Scoring 328
 12.4.2 Classification Error Rate 328
 12.4.3 Detection-based Evaluation Metrics 328
12.5 Technical Approaches 333
 12.5.1 Topic ID System Overview 333
 12.5.2 Automatic Speech Recognition 333
 12.5.3 Feature Extraction 334
 12.5.4 Feature Selection and Transformation 335
 12.5.5 Latent Concept Modeling 340
 12.5.6 Topic ID Classification and Detection 343
 12.5.7 Example Topic ID Results on the Fisher Corpus 346
 12.5.8 Novel Topic Detection 350
 12.5.9 Topic Clustering 350
12.6 New Trends and Future Directions 352
References 353

13 Speech Summarization 357
 Yang Liu and Dilek Hakkani-Tür 357

13.1 Task Description 357
 13.1.1 General Definition of Summarization 357
 13.1.2 Speech Summarization 359
 13.1.3 Applications 361
13.2 Challenges when Using Speech Input 362
 13.2.1 Automatic Speech Recognition Errors 363
 13.2.2 Speaker Turns 363
 13.2.3 Sentence Boundaries 363
 13.2.4 Disfluencies and Ungrammatical Utterances 364
 13.2.5 Other Style and Structural Information 365
13.3 Data Sets 366
 13.3.1 Broadcast News (BN) 367
 13.3.2 Lectures 368
 13.3.3 Multi-party Conversational Speech 369
 13.3.4 Voice Mail 371
13.4 Evaluation Metrics 371
 13.4.1 Recall, Precision, and F-measure 372
 13.4.2 ROUGE 372
13.4.3 The Pyramid Method 373
13.4.4 Weighted Precision 374
13.4.5 SumACCY and Weighted SumACCY 374
13.4.6 Human Evaluation 375
13.4.7 Issues and Discussions 375
13.5 General Approaches 375
 13.5.1 Extractive Summarization: Unsupervised Methods 376
 13.5.2 Extractive Summarization: Supervised Learning Methods 381
 13.5.3 Moving Beyond Generic Extractive Summarization 385
 13.5.4 Summary 386
13.6 More Discussions on Speech versus Text Summarization 386
 13.6.1 Speech Recognition Errors 386
 13.6.2 Sentence Segmentation 388
 13.6.3 Disfluencies 389
 13.6.4 Acoustic/Prosodic and Other Speech Features 390
13.7 Conclusions 391
References 392

14 Speech Analytics 397
 I. Dan Melamed and Mazin Gilbert
 14.1 Introduction 397
 14.2 System Architecture 398
 14.3 Speech Transcription 401
 14.4 Text Feature Extraction 402
 14.5 Acoustic Feature Extraction 403
 14.6 Relational Feature Extraction 405
 14.7 DBMS 405
 14.8 Media Server and Player 408
 14.9 Trend Analysis 409
 14.10 Alerting System 413
 14.11 Conclusion 414
References 415

15 Speech Retrieval 417
 Ciprian Chelba, Timothy J. Hazen, Bhuvana Ramabhadran and Murat Saraçlar
 15.1 Task Description 417
 15.1.1 Spoken Document Retrieval 417
 15.1.2 Spoken Utterance Retrieval 418
 15.1.3 Spoken Term Detection 418
 15.1.4 Browsing 418
 15.2 Applications 418
 15.2.1 Broadcast News 419
 15.2.2 Academic Lectures 419
 15.2.3 Sign Language Video 419
 15.2.4 Historical Interviews 420
 15.2.5 General Web Video 420
15.3 Challenges Using Speech Input 420
 15.3.1 Overview 420
 15.3.2 Coping with ASR Errors Using Lattices 421
 15.3.3 Out-of-vocabulary Words 422
 15.3.4 Morphologically Rich Languages 423
 15.3.5 Resource-limited Languages and Dialects 423
15.4 Evaluation Metrics 424
15.5 Benchmark Data Sets 425
 15.5.1 TREC 425
 15.5.2 NIST STD 426
15.6 Approaches 426
 15.6.1 Basic SDR Approaches 426
 15.6.2 Basic STD Approaches 428
 15.6.3 Using Sub-word Units 430
 15.6.4 Using Lattices 432
 15.6.5 Hybrid and Combination Methods 434
 15.6.6 Determining Thresholds 435
 15.6.7 Presentation and Browsing 437
 15.6.8 Other Previous Work 438
15.7 New Trends 439
 15.7.1 Indexing and Retrieval for very Large Corpora 439
 15.7.2 Query by Example 441
 15.7.3 Optimizing Evaluation Performance 442
 15.7.4 Multilingual Speech Retrieval 443
15.8 Discussion and Conclusions 443
References 444
Index 447