DESIGN OF MACHINERY

AN INTRODUCTION TO THE SYNTHESIS AND ANALYSIS OF MECHANISMS AND MACHINES

Fifth Edition

Robert L. Norton
Worcester Polytechnic Institute
Worcester, Massachusetts
CONTENTS

Preface to the Fifth Edition ... xvii
Preface to the First Edition ... xix

PART I KINEMATICS OF MECHANISMS ... 1

Chapter 1 Introduction ... 3
 1.0 Purpose ... 3
 1.1 Kinematics and Kinetics .. 3
 1.2 Mechanisms and Machines .. 4
 1.3 A Brief History of Kinematics .. 5
 1.4 Applications of Kinematics .. 6
 1.5 The Design Process .. 7
 Design, Invention, Creativity ... 7
 Identification of Need ... 8
 Background Research ... 9
 Goal Statement .. 10
 Performance Specifications .. 10
 Ideation and Invention .. 10
 Analysis ... 12
 Selection .. 13
 Detailed Design ... 13
 Prototyping and Testing ... 13
 Production .. 14
 1.6 Other Approaches to Design .. 15
 Axiomatic Design ... 15
 1.7 Multiple Solutions ... 16
 1.8 Human Factors Engineering .. 16
 1.9 The Engineering Report ... 17
 1.10 Units ... 17
 1.11 A Design Case Study .. 19
 Educating for Creativity in Engineering 20
 1.12 What's to Come ... 25
 1.13 Resources with This Text ... 25
 Programs .. 25
 Videos .. 25
 1.14 References ... 26
 1.15 Bibliography ... 27

Chapter 2 Kinematics Fundamentals .. 30
 2.0 Introduction ... 30
 2.1 Degrees of Freedom (DOF) or Mobility 30
 2.2 Types of Motion ... 31
 2.3 Links, Joints, and Kinematic Chains ... 32
 2.4 Drawing Kinematic Diagrams .. 36
 2.5 Determining Degree of Freedom or Mobility 37
 Degree of Freedom (Mobility) in Planar Mechanisms 38
 Degree of Freedom (Mobility) in Spatial Mechanisms 40
 2.6 Mechanisms and Structures .. 40
 2.7 Number Synthesis ... 42
 2.8 Paradoxes ... 46
 2.9 Isomers .. 47
2.10 Linkage Transformation ... 48
2.11 Intermittent Motion ... 53
2.12 Inversion ... 53
2.13 The Grashof Condition .. 55
 Classification of the Fourbar Linkage 60
2.14 Linkages of More Than Four Bars ... 62
 Geared Fivebar Linkages ... 62
 Sixbar Linkages .. 63
 Grashof-Type Rotatability Criteria for Higher-Order Linkages 63
2.15 Springs as Links ... 65
2.16 Compliant Mechanisms ... 65
2.17 Micro Electro-Mechanical Systems (MEMS) 67
2.18 Practical Considerations .. 69
 Pin Joints versus Sliders and Half Joints 69
 Cantilever or Straddle Mount? ... 71
 Short Links ... 72
 Bearing Ratio .. 72
 Commercial Slides .. 73
 Linkages versus Cams .. 73
2.19 Motors and Drivers .. 74
 Electric Motors .. 74
 Air and Hydraulic Motors .. 79
 Air and Hydraulic Cylinders .. 79
 Solenoids .. 80
2.20 References .. 80
2.21 Problems .. 81

Chapter 3 Graphical Linkage Synthesis ... 96
3.0 Introduction .. 96
3.1 Synthesis .. 96
3.2 Function, Path, and Motion Generation 98
3.3 Limiting Conditions ... 100
3.4 Dimensional Synthesis .. 102
 Two-Position Synthesis ... 103
 Three-Position Synthesis with Specified Moving Pivots 109
 Three-Position Synthesis with Alternate Moving Pivots 110
 Three-Position Synthesis with Specified Fixed Pivots 111
 Position Synthesis for More Than Three Positions 117
3.5 Quick-Return Mechanisms ... 117
 Fourbar Quick-Return ... 117
 Sixbar Quick-Return .. 119
3.6 Coupler Curves .. 122
3.7 Cognates .. 132
 Parallel Motion .. 136
 Geared Fivebar Cognates of the Fourbar 138
3.8 Straight-Line Mechanisms ... 139
 Designing Optimum Straight-Line Fourbar Linkages 142
3.9 Dwell Mechanisms .. 146
 Single-Dwell Linkages ... 146
 Double-Dwell Linkages ... 149
3.10 Other Useful Linkages .. 151
 Constant Velocity Piston Motion .. 151
 Large Angular Excursion Rocker Motion 152
 Remote Center Circular Motion ... 153
3.11 References .. 155
3.12 Bibliography ... 156
3.13 Problems .. 157
3.14 Projects .. 170
Chapter 6 Velocity Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>6.1 Definition of Velocity</td>
<td>285</td>
</tr>
<tr>
<td>6.2 Graphical Velocity Analysis</td>
<td>288</td>
</tr>
<tr>
<td>6.3 Instant Centers of Velocity</td>
<td>292</td>
</tr>
<tr>
<td>6.4 Velocity Analysis with Instant Centers</td>
<td>299</td>
</tr>
<tr>
<td>- Angular Velocity Ratio</td>
<td>301</td>
</tr>
<tr>
<td>- Mechanical Advantage</td>
<td>303</td>
</tr>
<tr>
<td>- Using Instant Centers in Linkage Design</td>
<td>305</td>
</tr>
<tr>
<td>6.5 Centrodes</td>
<td>307</td>
</tr>
<tr>
<td>- A "Linkless" Linkage</td>
<td>308</td>
</tr>
<tr>
<td>- Cusps</td>
<td>310</td>
</tr>
<tr>
<td>6.6 Velocity of Slip</td>
<td>311</td>
</tr>
<tr>
<td>6.7 Analytical Solutions for Velocity Analysis</td>
<td>315</td>
</tr>
<tr>
<td>- The Fourbar Pin-Jointed Linkage</td>
<td>315</td>
</tr>
<tr>
<td>- The Fourbar Crank-Slider</td>
<td>318</td>
</tr>
<tr>
<td>- The Fourbar Slider-Crank</td>
<td>321</td>
</tr>
<tr>
<td>- The Fourbar Inverted Crank-Slider</td>
<td>322</td>
</tr>
<tr>
<td>6.8 Velocity Analysis of the Geared Fivebar Linkage</td>
<td>324</td>
</tr>
<tr>
<td>6.9 Velocity of Any Point on a Linkage</td>
<td>325</td>
</tr>
<tr>
<td>6.10 References</td>
<td>327</td>
</tr>
<tr>
<td>6.11 Problems</td>
<td>327</td>
</tr>
</tbody>
</table>

Chapter 7 Acceleration Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0 Introduction</td>
<td>350</td>
</tr>
<tr>
<td>7.1 Definition of Acceleration</td>
<td>350</td>
</tr>
<tr>
<td>7.2 Graphical Acceleration Analysis</td>
<td>353</td>
</tr>
<tr>
<td>7.3 Analytical Solutions for Acceleration Analysis</td>
<td>358</td>
</tr>
<tr>
<td>- The Fourbar Pin-Jointed Linkage</td>
<td>358</td>
</tr>
<tr>
<td>- The Fourbar Crank-Slider</td>
<td>362</td>
</tr>
<tr>
<td>- The Fourbar Slider-Crank</td>
<td>364</td>
</tr>
<tr>
<td>- Coriolis Acceleration</td>
<td>366</td>
</tr>
<tr>
<td>- The Fourbar Inverted Crank-Slider</td>
<td>368</td>
</tr>
<tr>
<td>7.4 Acceleration Analysis of the Geared Fivebar Linkage</td>
<td>371</td>
</tr>
<tr>
<td>7.5 Acceleration of Any Point on a Linkage</td>
<td>372</td>
</tr>
<tr>
<td>7.6 Human Tolerance of Acceleration</td>
<td>374</td>
</tr>
<tr>
<td>7.7 Jerk</td>
<td>376</td>
</tr>
<tr>
<td>7.8 Linkages of N Bars</td>
<td>379</td>
</tr>
<tr>
<td>7.9 Reference</td>
<td>379</td>
</tr>
<tr>
<td>7.10 Problems</td>
<td>379</td>
</tr>
<tr>
<td>7.11 Virtual Laboratory</td>
<td>400</td>
</tr>
</tbody>
</table>

Chapter 8 Cam Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0 Introduction</td>
<td>401</td>
</tr>
<tr>
<td>8.1 Cam Terminology</td>
<td>402</td>
</tr>
<tr>
<td>- Type of Follower Motion</td>
<td>402</td>
</tr>
<tr>
<td>- Type of Joint Closure</td>
<td>404</td>
</tr>
<tr>
<td>- Type of Follower</td>
<td>405</td>
</tr>
<tr>
<td>- Type of Cam</td>
<td>405</td>
</tr>
<tr>
<td>- Type of Motion Constraints</td>
<td>406</td>
</tr>
<tr>
<td>- Type of Motion Program</td>
<td>407</td>
</tr>
<tr>
<td>8.2 SVAJ Diagrams</td>
<td>408</td>
</tr>
<tr>
<td>8.3 Double-Dwell Cam Design—Choosing SVAJ Functions</td>
<td>409</td>
</tr>
<tr>
<td>- The Fundamental Law of Cam Design</td>
<td>412</td>
</tr>
<tr>
<td>- Simple Harmonic Motion (SHM)</td>
<td>413</td>
</tr>
<tr>
<td>- Cycloidal Displacement</td>
<td>414</td>
</tr>
<tr>
<td>- Combined Functions</td>
<td>417</td>
</tr>
</tbody>
</table>
9.14 Bibliography .. 532
9.15 Problems ... 532

PART II DYNAMICS OF MACHINERY ..543

Chapter 10 Dynamics Fundamentals ..545

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0 Introduction</td>
<td>545</td>
</tr>
<tr>
<td>10.1 Newton's Laws of Motion</td>
<td>545</td>
</tr>
<tr>
<td>10.2 Dynamic Models</td>
<td>546</td>
</tr>
<tr>
<td>10.3 Mass</td>
<td>546</td>
</tr>
<tr>
<td>10.4 Mass Moment and Center of Gravity</td>
<td>547</td>
</tr>
<tr>
<td>10.5 Mass Moment of Inertia (Second Moment of Mass)</td>
<td>549</td>
</tr>
<tr>
<td>10.6 Parallel Axis Theorem (Transfer Theorem)</td>
<td>551</td>
</tr>
<tr>
<td>10.7 Determining Mass Moment of Inertia</td>
<td>551</td>
</tr>
<tr>
<td>Analytical Methods</td>
<td>551</td>
</tr>
<tr>
<td>Experimental Methods</td>
<td>552</td>
</tr>
<tr>
<td>10.8 Radius of Gyration</td>
<td>553</td>
</tr>
<tr>
<td>10.9 Modelling Rotating Links</td>
<td>554</td>
</tr>
<tr>
<td>10.10 Center of Percussion</td>
<td>554</td>
</tr>
<tr>
<td>10.11 Lumped Parameter Dynamic Models</td>
<td>556</td>
</tr>
<tr>
<td>Spring Constant</td>
<td>557</td>
</tr>
<tr>
<td>Damping</td>
<td>558</td>
</tr>
<tr>
<td>10.12 Equivalent Systems</td>
<td>559</td>
</tr>
<tr>
<td>Combining Dampers</td>
<td>561</td>
</tr>
<tr>
<td>Combining Springs</td>
<td>561</td>
</tr>
<tr>
<td>Combining Masses</td>
<td>562</td>
</tr>
<tr>
<td>Lever and Gear Ratios</td>
<td>562</td>
</tr>
<tr>
<td>10.13 Solution Methods</td>
<td>568</td>
</tr>
<tr>
<td>10.14 The Principle of d'Alembert</td>
<td>569</td>
</tr>
<tr>
<td>10.15 Energy Methods—Virtual Work</td>
<td>571</td>
</tr>
<tr>
<td>10.16 References</td>
<td>573</td>
</tr>
<tr>
<td>10.17 Problems</td>
<td>573</td>
</tr>
</tbody>
</table>

Chapter 11 Dynamic Force Analysis ...579

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0 Introduction</td>
<td>579</td>
</tr>
<tr>
<td>11.1 Newtonian Solution Method</td>
<td>579</td>
</tr>
<tr>
<td>11.2 Single Link in Pure Rotation</td>
<td>580</td>
</tr>
<tr>
<td>11.3 Force Analysis of a Threebar Crank-Slide Linkage</td>
<td>583</td>
</tr>
<tr>
<td>11.4 Force Analysis of a Fourbar Linkage</td>
<td>589</td>
</tr>
<tr>
<td>11.5 Force Analysis of a Fourbar Slider-Crank Linkage</td>
<td>595</td>
</tr>
<tr>
<td>11.6 Force Analysis of the Inverted Crank-Slider</td>
<td>597</td>
</tr>
<tr>
<td>11.7 Force Analysis—Linkages with More Than Four Bars</td>
<td>600</td>
</tr>
<tr>
<td>11.8 Shaking Force and Shaking Moment</td>
<td>601</td>
</tr>
<tr>
<td>11.9 Program Linkages</td>
<td>602</td>
</tr>
<tr>
<td>11.10 Linkage Torque Analysis by an Energy Method</td>
<td>602</td>
</tr>
<tr>
<td>11.11 Controlling Input Torque—Flywheels</td>
<td>605</td>
</tr>
<tr>
<td>11.12 A Linkage Force Transmission Index</td>
<td>606</td>
</tr>
<tr>
<td>11.13 Practical Considerations</td>
<td>611</td>
</tr>
<tr>
<td>11.14 Reference</td>
<td>612</td>
</tr>
<tr>
<td>11.15 Problems</td>
<td>614</td>
</tr>
<tr>
<td>11.16 Virtual Laboratory</td>
<td>627</td>
</tr>
<tr>
<td>11.17 Projects</td>
<td>627</td>
</tr>
</tbody>
</table>
Chapter 15 Cam Dynamics

15.0 Introduction...751
15.1 Dynamic Force Analysis of the Force-Closed Cam-Follower752
 Undamped Response..752
 Damped Response...755
15.2 Resonance ...760
15.3 Kinetostatic Force Analysis of the Force-Closed Cam-Follower763
15.4 Kinetostatic Force Analysis of the Form-Closed Cam-Follower768
15.5 Kinetostatic Camshaft Torque ..771
15.6 Measuring Dynamic Forces and Accelerations773
15.7 Practical Considerations..777
15.8 References ...777
15.9 Bibliography ..778
15.10 Problems ...778
15.11 Virtual Laboratory...782

Chapter 16 Cam- and Servo-Driven Mechanisms783

16.0 Introduction...783
16.1 Servomotors ...784
16.2 Servo Motion Control ...785
 Servo Motion Functions..785
16.3 Cam-Driven Linkages ..786
16.4 Servo-Driven Linkages ..794
16.5 Other Linkages ...800
16.6 Cam-Driven Versus Servo-Driven Mechanisms800
 Flexibility...800
 Cost..801
 Reliability...801
 Complexity...801
 Robustness...801
 Packaging...802
 Load Capacity...802
16.7 References ...803
16.8 Bibliography ..803
16.9 Problems ...803

Appendices

A Computer Programs ...805
B Material Properties ...807
C Geometric Properties ..811
D Spring Data ..813
E Coupler Curve Atlases ..817
F Answers to Selected Problems ...819
G Equations for Under- or Overbalanced Multicylinder Engines835

Index..839

DVD Catalog..855