Circuit and System Approaches for the Design of Low-Voltage, Low-Power Delta-Sigma Modulators

Vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt
zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von

Dipl.-Ing. M.Sc.
Massoud Momeni
geboren am 2. Dezember 1981
in Dubai, Vereinigte Arabische Emirate

Referent: Prof. Dr. Dr. h. c. mult. Manfred Glesner
 Technische Universität Darmstadt

Korreferent: Prof. Dr.-Ing. Maurits Ortmanns
 Universität Ulm

Tag der Einreichung: 27.04.2010
Tag der mündlichen Prüfung: 28.06.2010

D17
Darmstädter Dissertationen
Table of Contents

1 Introduction and Overview ... 1
 1.1 Motivation ... 1
 1.2 Research Scope and Objectives 3
 1.3 Thesis Outline .. 4

2 Fundamentals of ΔΣ A/D Conversion 7
 2.1 Nyquist-Rate A/D Conversion 8
 2.1.1 Sampling .. 8
 2.1.2 Quantization and Additive White Noise Approximation ... 10
 2.1.3 In-Band Quantization Error Power and Dynamic Range ... 13
 2.2 Oversampling and Noise-Shaping A/D Converters 14
 2.2.1 Oversampling .. 14
 2.2.2 Noise Shaping .. 16
 2.2.3 Basic ΔΣ ADC Architecture 19
 2.2.3.1 Anti-Aliasing Filter 20
 2.2.3.2 ΔΣ Modulator 20
 2.2.3.3 Decimator .. 20
 2.2.4 Signal and Noise Transfer Function and 1st-Order ΔΣ Modulation 22
 2.2.5 Performance Metrics 25
 2.2.6 Ideal ΔΣ Modulator Performance 27
 2.2.6.1 Dynamic Range as a Function of the Modulator Order ... 28
 2.2.6.2 Dynamic Range as a Function of the Oversampling Ratio ... 28
 2.2.6.3 Dynamic Range as a Function of the Quantizer Resolution ... 29
 2.2.7 Single-Stage ΔΣ Architectures 31
 2.2.7.1 First-Order ΔΣ Modulator 31
 2.2.7.2 Second-Order ΔΣ Modulator 33
 2.2.7.3 Higher-Order ΔΣ Modulators 35
 2.2.8 Cascade ΔΣ Architectures 37
 2.2.8.1 Third-Order Cascade ΔΣ Modulator 39
2.2.8.2 L-0 Cascade ΔΣ Modulator 41
2.2.9 Multi-Bit ΔΣ Architectures 43
 2.2.9.1 Internal Multi-Bit ADC and DAC Architecture 45
 2.2.9.2 Element Trimming 46
 2.2.9.3 Dual Quantization 47
 2.2.9.4 Dynamic Element Matching 47
 2.2.9.5 Digital Correction of DAC Nonlinearity 48
2.3 Summary ... 48

3 State of the Art in Low-Voltage Circuit Design and ΔΣ A/D Conversion 51
 3.1 History .. 52
 3.2 Low-Voltage Circuit Design and ΔΣ A/D Conversion 56
 3.2.1 Dynamic Amplifiers 59
 3.2.2 Inverter-Based Switched-Capacitor Circuitry 61
 3.2.3 Sturdy-MASH ΔΣ Modulation 62
 3.2.4 Digital Correction 63
 3.2.5 Switched-Opamps 64
 3.2.6 Reset-Opamps 65
 3.2.7 Switched-RC 66
 3.3 Survey of Published ΔΣ A/D Converters 67
 3.3.1 Figure of Merit 67
 3.3.2 Survey .. 68
 3.4 Summary ... 76

4 Comparator-Based Switched-Capacitor Circuits 79
 4.1 Basic Principle .. 80
 4.1.1 Input Sampling 80
 4.1.2 Traditional Opamp-Based Switched-Capacitor Gain Stage 80
 4.1.3 Comparator-Based Switched-Capacitor Gain Stage 81
 4.2 Practical CBSC Gain Stage 83
 4.2.1 Preset Phase 84
 4.2.2 Coarse Charge Transfer Phase 84
 4.2.3 Fine Charge Transfer Phase 87
 4.3 Linearity Performance 88
 4.3.1 Offset due to Finite Comparator Delay 89
 4.3.2 Offset due to Finite Switch On-Resistance 91
 4.3.3 Total Offset 92
 4.3.4 Nonlinearity due to Finite Comparator Delay 93
Table of Contents

4.3.5 Nonlinearity due to Finite Switch On-Resistance .. 97
4.3.6 Total Nonlinearity ... 99
4.3.7 Total Single-Ramp Charge Transfer Time .. 100
4.3.8 Total Dual-Ramp Charge Transfer Time ... 102

4.4 Advanced CBSC Circuit Techniques ... 110
4.4.1 Overshoot Correction .. 110
4.4.1.1 Limitation due to the Summing Node Voltage ... 111
4.4.1.2 Limitation due to the Output Voltage Swing ... 114
4.4.2 Multiple-Ramp Charge Transfer .. 115
4.4.3 Comparison of Single-, Dual-, and Multiple-Ramp Charge Transfers 122

4.5 Benefits and Drawbacks of the CBSC Technique .. 127
4.6 Summary .. 128

5 ΔΣ Modulator Hardware Implementation ... 131
5.1 A 1.2-V 2nd-Order Lowpass ΔΣ Modulator in 0.13-μm CMOS 132
 5.1.1 Modulator Topology .. 132
 5.1.2 Fully-Differential CBSC stage .. 133
 5.1.3 Switched-Capacitor Realization .. 135
 5.1.4 Capacitor Sizing .. 135
 5.1.5 Switches .. 136
 5.1.6 Miller Amplifier .. 138
 5.1.6.1 Finite DC Gain .. 139
 5.1.6.2 Settling and Frequency Response .. 139
 5.1.6.3 Common-Mode Feedback ... 140
 5.1.7 Folded Cascode Amplifier .. 141
 5.1.8 Comparator .. 143
 5.1.9 CBSC Logic .. 144
 5.1.10 Current Sources ... 145
 5.1.11 Quantizer .. 145
 5.1.12 Clock Generator ... 146
 5.1.13 Performance .. 148

5.2 A Class of 1.2-V Lowpass Single- and Multi-Stage ΔΣ Modulators in 0.13-μm CMOS ... 153
 5.2.1 Modulator Topologies .. 153
 5.2.2 Differential CBSC Stage ... 155
 5.2.3 Switched-Capacitor Realization ... 156
 5.2.4 Operational Amplifier .. 160
 5.2.5 Comparator .. 164
TABLE OF CONTENTS

5.2.6 Quantizer ... 165
5.2.7 Performance .. 165
5.3 Summary .. 169

6 Experimental Prototyping and Test Results 171
6.1 Chip Floorplan, Layout, and Pin-Out Description 172
6.2 Printed Circuit Boards, Test Equipment and Setup 174
6.3 Test Results and Performance Comparison with the State of the Art 179
6.4 Summary .. 182

7 Conclusions and Future Work 183
7.1 Contributions of the Work 184
7.2 Directions for Future Work 186

A Overview of Published ΔΣ A/D Converters 189

B Impact of Circuit Nonidealities on the Implementation of Switched-Capacitor Resonators 203
B.1 Lowpass and Bandpass ΔΣ Modulators 203
B.2 Switched-Capacitor Integrators 205
 B.2.1 Finite Opamp Gain A 206
 B.2.2 Nonzero Input Capacitance C_n 207
 B.2.3 Finite Unity-Gain Bandwidth f_u 207
B.3 Integrator-Based Switched-Capacitor Resonators 208
 B.3.1 Impact of Integrator-Related Circuit Nonidealities 209
B.4 Switched-Capacitor Delay Cells 210
 B.4.1 Finite Opamp Gain A 210
 B.4.2 Nonzero Input Capacitance C_n 211
 B.4.3 Finite Unity-Gain Bandwidth f_u 211
B.5 Delay-Based Switched-Capacitor Resonators 211
 B.5.1 Impact of Delay-Cell-Related Circuit Nonidealities 213
B.6 Simulation Results and Discussion 215
B.7 Summary .. 215

References 239